
Temporal dynamics of microbial communities in
microcosms in response to pollutants

SHUO JIAO,* ZHENGQING ZHANG,† FAN YANG,* YANBING LIN,* WEIMIN CHEN* and

GEHONG WEI*

*State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling,

Shaanxi 712100, China, †Laboratory of Forestry Pests Biological Control, College of Forestry, Northwest A&F University,

Yangling, Shaanxi 712100, China

Abstract

Elucidating the mechanisms underlying microbial succession is a major goal of micro-

bial ecology research. Given the increasing human pressure on the environment and

natural resources, responses to the repeated introduction of organic and inorganic pol-

lutants are of particular interest. To investigate the temporal dynamics of microbial

communities in response to pollutants, we analysed the microbial community structure

in batch microcosms that were inoculated with soil bacteria following exposure to

individual or combined pollutants (phenanthrene, n-octadecane, phenanthrene +
n-octadecane and phenanthrene + n-octadecane + CdCl2). Subculturing was performed

at 10-day intervals, followed by high-throughput sequencing of 16S rRNA genes. The

dynamics of microbial communities in response to different pollutants alone and in

combination displayed similar patterns during enrichment. Specifically, the repression
and induction of microbial taxa were dominant, and the fluctuation was not significant.

The rate of appearance for new taxa and the temporal turnover within microbial com-

munities were higher than the rates reported in other studies of microbial communities

in air, water and soil samples. In addition, conditionally rare taxa that were specific to

the treatments exhibited higher betweenness centrality values in the co-occurrence net-

work, indicating a strong influence on other interactions in the community. These

results suggest that the repeated introduction of pollutants could accelerate microbial

succession in microcosms, resulting in the rapid re-equilibration of microbial commu-

nities.
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Introduction

In ecology, succession refers to the dynamic changes

that take place in the abundance and composition of

species in a given community over time; understanding

this process is a major goal of ecological research

(Shade et al. 2013). Studies on the succession of micro-

bial communities in response to environmental changes

are increasing due to the important ecological functions

of microbes (Fierer et al. 2010). Although surveying

microbial succession is challenging, high-throughput

sequencing and other culture-independent approaches

have accelerated progress, because these methods can

detect most of the microbial taxa that are present in a

given sample (Gonzalez et al. 2012).

Microbial succession has been explored in many

diverse systems, including primary succession in the

infant gut (Koenig et al. 2011), recurring seasonality in

aquatic systems (Eiler et al. 2012; Gilbert et al. 2012),

re-treating glacier soils (Brown & Jumpponen 2014)

and environments polluted with heavy metals (Hur

et al. 2011) or petroleum (Mikkonen et al. 2011; Yu
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et al. 2011). A recent meta-analysis revealed that tem-

poral variability in microbial communities is consistent

among similar environments (Shade et al. 2013).

Because the temporal dynamics of microbial commu-

nities in natural environments are influenced by mul-

tiple environmental factors simultaneously, it is

difficult to determine the relative contributions made

by individual factors to the overall microbial succes-

sion process (Jiao et al. 2016). Microcosms can serve

as models of closed systems with tightly controlled

conditions, facilitating the investigation of temporal

dynamics in microbial communities that occur follow-

ing changes in single environmental factors (Vi~nas

et al. 2005).

A vital indicator for the dynamics of microbial suc-

cession is the temporal turnover of the time–decay rela-

tionship (TDR), which has been used to describe

decreasing community similarities over time (Nekola &

White 1999). Community temporal turnover is the elim-

ination and replacement of species over time, as applied

to studies on animal and plant communities (Hatosy

et al. 2013; MacArthur & Wilson 2015). Microbial com-

munities in the air, water and soil also exhibit similar

temporal patterns with significant TDRs (Shade et al.

2013). Additionally, community temporal dynamics can

be estimated by the species–time relationship (STR), the

temporal analog of the widely used species–area rela-

tionship. STRs are primarily focused on changes in

alpha diversity and species richness over time (Preston

1960; Rosenzweig 1995). Significant STRs have been

reported for microbes on leaf surfaces (Redford & Fierer

2009), in bioreactors (van der Gast et al. 2008) and in

soils (Shade et al. 2013), suggesting that they are gener-

ally applicable to the microbial communities in different

environments.

Highly diverse and complex microbial communities

are present in all ecosystems, where they play crucial

roles in biogeochemical processes (Falkowski et al.

2008). Interestingly, microorganisms that are present at

low levels may contribute to the function and stability

of ecosystems (Shade et al. 2014), as suggested for dia-

zotrophs in seawater (LaRoche & Breitbarth 2005),

archaeal ammonia oxidizers in soils (Leininger et al.

2006) and methanogens in the gut (Horz & Conrads

2010). When environmental conditions are altered, these

rare microorganisms may become locally extinct, or

they may be maintained at low levels or become more

abundant and able to play a greater role in a given

ecosystem. Shade et al. (2014) defined conditionally rare

taxa (CRT) as microbial taxa that are usually present at

low levels within a community, but they may become

abundant under particular conditions. Although CRT

contribute greatly to temporal community dissimilarity

(Shade et al. 2014), their ecological roles and functional

importance in habitats exposed to complex pollutants

remain unknown.

In the present study, we investigated the composition

of microbial communities that were exposed to two

organic pollutants (the aliphatic alkane n-octadecane

and the aromatic phenanthrene) separately and in com-

bination, in both the presence and the absence of cad-

mium, using high-throughput sequencing of 16S rRNA

genes. To ensure that succession was caused by the pol-

lutants, tightly regulated microcosms were used as a

simple model for understanding the complex interac-

tions between environmental factors and microbial com-

munities. The ultimate objective of this study was to

investigate succession in microbial communities in

response to the pollutants.

Materials and methods

Sampling site

Contaminated surface soil (0–30 cm depth) was col-

lected from a 100 9 100 m2 area surrounding an oil

refinery (E 108°50010″ and N 37°35035″) in Yulin City,

northwest China. This area has been contaminated con-

tinuously with crude oil over the last 20 years, and no

plants grow there. Five soil cores (~5 cm in diameter)

were removed from the sampling area using the cross-

technique (samples were collected from the four corners

and the centre), placed in sterile plastic bags and imme-

diately transported to the laboratory on dry ice. A por-

tion of each soil sample was air-dried to analyse the

edaphic properties. The remaining sample portions

were stored at 4 °C in a sealed plastic bag until needed

and were then used within 1 week in all cases. The soil

was of a sandy loam texture and contained total petro-

leum hydrocarbons of 5.69 � 0.01 g/kg of dry soil, as

measured using the ultrasonic-Soxhlet extraction gravi-

metric method (Huesemann 1995). The pH was 7.7, and

the other parameters were as follows: available nitro-

gen, 38.0 mg/kg; total nitrogen, 2776.3 mg/kg; avail-

able potassium, 87.5 mg/kg; available phosphorus,

52.1 mg/kg; total phosphorus, 989.2 mg/kg; organic

matter, 6.9 g/kg; cation-exchange capacity, 8.6 cmol/kg;

and water-holding capacity, 22.4%.

Preparation of microcosms

Microcosms were constructed using basal salt medium

(BSM; Jiao et al. 2016) supplemented with (i) 500 mg/L

phenanthrene (PHE), (ii) 500 mg/L n-octadecane (C18),

(iii) 250 mg/L phenanthrene + 250 mg/L n-octadecane

(PC) or (iv) 250 mg/L phenanthrene + 250 mg/L

n-octadecane + 50 mg/L CdCl2 (PCC). Both phenan-

threne and n-octadecane are components of petroleum
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and can be used as a carbon source by bacteria. Cad-

mium (Cd) was used because it is a heavy metal that is

highly toxic to animals, plants and microorganisms

(Thavamani et al. 2012). To prepare the BSM + pollu-

tants, organic pollutants were dissolved in dichloro-

methane, placed in an empty sterile flask and mixed with

BSM after solvent evaporation (Jiao et al. 2016). For the

PCC, the dissolved CdCl2 was added to an empty flask,

and organic pollutants were added after autoclaving.

At the beginning of the enrichment process, 20 g of

contaminated soil was added to 180 mL of sterilized

NaCl solution (0.85%). After being shaken for 10 min at

240 rpm, 20 mL of supernatant from the soil suspen-

sion was used to inoculate 180 mL of BSM supple-

mented with the appropriate pollutant. The effects of

the initial soil properties on the microcosms were

neglected as the soil was diluted more than 100-fold,

and only the supernatant was used as the inoculum.

All of the treatments were performed in triplicate. Inoc-

ulated microcosms were incubated at 28 °C with shak-

ing (150 rpm) in the dark to avoid pollutant photolysis.

Successive subcultures were grown at 10-day intervals

over a 100-day incubation period. According to our

previous study (Jiao et al. 2016), the 10-stage enrich-

ment process could be divided into three phases as fol-

lows: I (subcultures 1–3), II (subcultures 4–7), and III

(subcultures 8–10), and these categories were used in

all of the subsequent analyses. The biomass from each

subculture was collected by centrifugation at 10 000 g

for 15 min at room temperature for microbial analysis

and was stored at �80 °C for subsequent DNA extrac-

tion. All of the operations were performed under asep-

tic conditions.

Analysis of residual organic pollutants

The residual organic pollutants were extracted from

supernatants with an equal volume of dichloro-

methane. The pollutant concentration was determined

by gas chromatography with flame ionization detection

(Model GC-2010 plus; Shimadzu, Kyoto, Japan) using

an SE30 capillary column (30 m long, 0.25 mm inside

diameter, 0.25 mm film thickness) with helium as a

carrier gas. The initial oven temperature was 80 °C,
and heating was conducted at a rate of 50 °C/min to

200 °C, where it was held for 1 min, then heated to

210 °C at a rate of 1 °C/min. The temperature of the

injector and detector was 290 °C. The total helium flow

rate was 30.0 mL/min, and the column flow rate was

30.0 mL/min. The components were identified by

matching their retention times with authentic stan-

dards. The biodegradation efficiency was calculated as

the ratio of the pollutant concentrations in blank

controls to treatments.

DNA preparation and MiSeq sequencing

Metagenomic DNA was extracted from the initial soil

sample using a FastDNA SPIN Kit for Soil (MP Bio-

chemicals, Solon, OH, USA) and from the microcosms

(treatments) using the sodium dodecyl sulphate–
cetyltrimethylammonium bromide (SDS-CTAB) method

(Wilson 1987). The microbial communities were profiled

by targeting the V4-V5 hypervariable regions of the 16S

rRNA gene (Yu et al. 2015) using the Illumina MiSeq

(250-bp paired-end reads) platform at Macrogen Inc.

(Seoul, South Korea; http://www.macrogen.com) as

described previously (Jiao et al. 2016).

Data analysis

Prior to data analysis, a subsample with a minimum of

15 925 sequences (according to the sample size) from

each sample was used to eliminate all potential inaccu-

racies. Sequences with ≥97% similarity were assigned

to the same operational taxonomic units (OTUs). Multi-

ple indices (Chao1 richness, observed OTUs, Pielou’s

evenness, Shannon’s index and Simpson’s index) were

calculated using the QIIME package (http://qiime.org/in

dex.html) to present the alpha diversity; pairwise

weighted UniFrac and Bray–Curtis dissimilarities were

estimated between the samples. A constrained analysis

of principal coordinates (CAP) was performed to evalu-

ate the relationship between the treatments and bacte-

rial community composition. A principal coordinate

analysis was performed on distance matrices to visual-

ize the sample relationships, and a canonical discrimi-

nant analysis (CDA) was used to identify the taxa

associated with different treatments. A similarity analy-

sis (ANOSIM; Clarke 1993) and a permutational multivari-

ate analysis of variance (ADONIS; Anderson 2001) were

performed to determine whether the sample classifica-

tions (different treatments) contained significant differ-

ences in phylogenetic or species diversity based on

weighted UniFrac and Bray–Curtis dissimilarity matri-

ces.

The association strength (correlation coefficient, R) of

each OTU to the treatment was determined using a

correlation-based indicator species analysis (C�aceres &

Legendre 2009) with 103 permutations. P-value adjust-

ments for multiple comparisons were performed using

the false discovery rate (FDR) correction according to

Storey (2002), and associations were considered signifi-

cant at q < 0.05. Bipartite networks were generated in

CYTOSCAPE (Smoot et al. 2011) using treatments as

source nodes and indicator OTUs as target nodes, with

edges (the lines connecting the nodes) representing

positive associations between indicator OTUs and

treatments.
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The dynamic patterns in microbial taxa during

enrichment (subculture) were identified using MASIGPRO

(Conesa et al. 2006) in the Bioconductor package with

default settings. The two-step regression approach

including the least-squares estimation of parameters

was performed to construct a general regression model

for each OTU, followed by a stepwise regression to

select the OTUs with statistically significant stage

changes (FDR-corrected P-values < 0.05). The visualiza-

tion of significant OTUs was based on a cluster analysis

for group OTUs sharing a similar profile.

For each treatment, STRs were constructed on the

basis of their degree of richness and were then calcu-

lated using the moving window (White et al. 2006). In

brief, a time series was partitioned into as many win-

dow subsets as possible based on the number of obser-

vations, and the STR model (the power law relationship

between time and richness) was fitted for each window.

TDRs were estimated by log-linear model fitting

between the changes in the community structure (as

assessed by pairwise Bray–Curtis dissimilarity) and

days elapsed. Community dissimilarities were con-

verted to similarities by subtracting them from 1. Arrhe-

nius (log–log) plots were used for modelling TDRs

using the equation ln(Ss) = constant � w ln(T), where

Ss is the pairwise similarity in community composition,

T is the time interval and the slope (w) is a measure of

the rate of community turnover across time (Nekola &

White 1999).

The identification of CRT was conducted by following

the previously reported procedure (Shade et al. 2014).

The model detected CRT with a bimodal distribution in

the relative abundance of OTUs; it used a threshold for

the coefficient of bimodality ≥0.90 and an abundance

threshold of 0.1% when blooming. The partitioned

Bray–Curtis dissimilarity between two samples attribu-

table to a subset of the community was calculated as the

fraction of beta diversity attributed to the CRT. Only

CRT were used to calculate the summation in the

numerator of the Bray–Curtis dissimilarity expression,

while all of the taxa were used to calculate the scaling

summation in the denominator.

Co-occurrence networks were constructed for bacte-

rial communities in the 10 subcultures, and OTUs

with an average relative abundance above 0.001%

were included in the analysis. Robust correlations

were defined as those with Spearman’s correlation

coefficients that were between two OTUs >0.6 and

P-values <0.01, and they formed the edges, while

selected OTUs served as network nodes. Betweenness

centrality can discern modules that maintain connec-

tivity in a network and is frequently used to define

keystone species within a system (Vick-Majors et al.

2014; Banerjee et al. 2015). Therefore, the betweenness

centrality values were calculated for each node and

compared between CRT and other OTUs using

Wilcoxon rank-sum tests.

All statistical analyses were performed in the R envi-

ronment (http://www.r-project.org) using VEGAN (Oksa-

nen et al. 2015), LABDSV (Roberts 2007), FDRTOOL (Klaus &

Strimmer 2013), IGRAPH (Csardi & Nepusz 2006), HMISC

(Harrell Jr 2008), GGPLOT2 (Wickham 2009) and GPLOTS

(Warnes et al. 2009) packages.

Results

Degradation of pollutants and distribution of taxa in
microcosm communities

In this study, 40 separate pollutant-degrading commu-

nities were obtained, corresponding to 10 stages of sub-

culturing for the PHE, C18, PC and PCC treatments.

The degradation rates of organic pollutants in these

communities were >80% (Fig. S1, Supporting informa-

tion). In treatment C18, the degradation efficiency of

n-octadecane was almost 100% in every batch, and in

the other three treatments, the biodegradation efficien-

cies tended to increase in successive subcultures,

indicating that the pollutant-degrading communities

were adapting. In the PCC treatment, the biodegrada-

tion of both n-octadecane and phenanthrene decreased

slightly compared with the PC treatment.

The complete sequencing data set from all 40 commu-

nities and the original soil sample consisted of 1 225 538

high-quality sequences. The average number of

sequences per sample (n = 41) was 29 891 (max = 70

838, min = 15 925, and SD = 9738), and the exact num-

bers were 15 925, 34 114, 25 268, 30 793 and 30 786 for

the original soil and for C18, PHE, PC and PCC, respec-

tively. The total number of OTUs was 30 233, of which

99.7% (30 146) were affiliated with the bacterial domain

and 0.2% (68) were affiliated with the archaeal domain,

while 19 OTUs were unclassified. The original soil sam-

ple contained a higher number of OTUs, but a lower

number of sequences (Table S1, Supporting information)

than all of the enriched communities. At the phylum

level, Proteobacteria and Bacteroidetes were the predomi-

nant groups in all 41 communities, with relative abun-

dance in the ranges of 46.6–77.1% and 15.3–34.2%,

respectively (Fig. S2, Supporting information). Actinobac-

teria were considerably more abundant in C18 than in

other treatments. Differences at the class level were sig-

nificant between the communities (Fig. S3, Supporting

information). Betaproteobacteria was the dominant group

in PHE, with a relative abundance of 49.4%. Actinobacte-

ria (19.6%) and Sphingobacteria (11.6%) were the most

abundant groups in C18. Flavobacteria was the most

abundant class in the PCC communities.
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Bacterial patterns associated with pollutants

The CAP based on the weighted UniFrac dissimilarity

(Fig. 1A) revealed that different treatments were signifi-

cant drivers of bacterial beta diversity, and the four treat-

ments formed distinct clusters in the ordination space.

PERMANOVA and ANOSIM confirmed the presence of distinct

bacterial communities that responded to different treat-

ments (Table 1). Significant taxonomic differences

between the treatments were examined using CDA based

on genera with a relative abundance of >0.5% (Fig. 1B).

In the C18 treatment, Sphingobacterium, Terrimonas, Nocar-

dia, Azospirillum, Gordonia and Thermomonas were the

abundant genera, while Hydrogenophaga, Novosphingob-

ium, Naxibacter and Sphingopyxis were dominant in the

PHE treatment. Pseudoxanthomonas, Parvibaculum,

Flavobacterium, Lactobacillus and Emticicia were abundant

genera in the PC treatment, and Delftia, Dokdonella, Chry-

seobacterium, Stenotrophomonas and Aquabacterium were

dominant in the PCC treatment.

The contributions of different microbial populations

to the overall community structure were evaluated

using a bipartite association network to visualize the

associations between the OTUs and treatments (Fig. 2).

For this purpose, we only focused on OTUs that dif-

fered significantly among treatments, because their

changes were primarily driven by exposure to pollu-

tants. The indicator statistics for 1320 OTUs (average

relative abundance > 0.001%) resulted in the selection

of 597 significant OTUs (q < 0.05) that were associated

with specific treatments. The association strengths (cor-

relation coefficient, R) of OTUs ranged from 0.34 to 1.0.

In total, 15 clusters of OTUs were generated in the

bipartite network. In cluster 1, 37.4% of the indicator

OTUs were associated with cross-combinations of all

treatments. In clusters 2–11, approximately 53.3% of the

OTUs were associated with cross-combinations of two

or three treatments. In clusters 12–15, 9.1% of the OTUs

were most strongly associated with a single treatment,

indicating a separated effect by different pollutants on

the microbial communities. The results of the bipartite

network showed that large proportions of the indicator

OTUs were cross-combinations, indicating that similar

taxonomic groups comprised communities from differ-

ent treatments; however, their abundance differed sig-

nificantly between treatments.

Succession patterns of bacterial communities

In general, the differences in the microbial community

compositions between treatments increased through pro-

gressive phases (from I to III), as demonstrated using PER-

MANOVA and ANOSIM (Table S2, Supporting information).

Based on the MASIGPRO analysis, OTUs with an aver-

age relative abundance >0.001% in all treatments were

80% confidence ellipses are shown
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Fig. 1 Distinct microbial patterns following different treatments. (A) Constrained analysis of the principal coordinates (CAP) of

microbial communities among 41 communities from four treatments (C18, n-octadecane, ‘■’; PHE, phenanthrene, ‘▲’; PC, phenan-

threne + n-octadecane, ‘♦’; and PCC, phenanthrene + n-octadecane + CdCl2, ‘●’) and the original soil based on the weighted UniFrac

distance. The 80% confidence ellipses surround each treatment group, ‘+’ represent the centre of the ellipses. (B) Canonical discrimi-

nant analysis plot comparing treatments against bacterial taxa loadings based on genera with relative abundance levels > 0.5%.

Arrows represent the degree of correlation between each taxon and each treatment as a measure of the predictive discrimination of

each treatment. [Colour figure can be viewed at wileyonlinelibrary.com]
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classified into three groups; Group 1 (regression)

included 601 (total = 1038), 562 (total = 1073), 553

(total = 1125) and 487 (total = 1108) OTUs for which the

abundance levels were significantly decreased in succes-

sive subculture phases in C18, PHE, PC and PCC treat-

ments, respectively (Fig. 3). Group II (induction)

included 254, 271, 227 and 281 OTUs that were signifi-

cantly increased in successive subculture phases in the

four treatments, respectively; and Group III (fluctua-

tion) contained 12, 31, 50 and 3 OTUs that were

increased in the second phase and decreased in the

third phase in the four treatments, respectively. These

results demonstrated a similar dynamic pattern in

microbial communities that were subjected to different

treatments. There were fewer OTUs smaller in Group

III than in Groups I and II, indicating that the dynamic

patterns were dominated by repression and induction

rather than fluctuation.

To further investigate the effects of the tested pollu-

tants, the top 15 most abundant taxa in Group 2 for

each treatment were compared using a heatmap

(Fig. S4, Supporting information). These OTUs included

diverse taxa in the Proteobacteria, Bacteroidetes, Actinobac-

teria and Firmicutes. In the C18 communities, enriched

OTUs were primarily attributed to the genera Tsuka-

murella, Azospirillum, Sphingobacterium, Naxibacter and

Rhodococcus, whereas Naxibacter, Delftia, Rhizobium and

Lactobacillus were predominant in the PHE communi-

ties. Furthermore, Acinetobacter, Delftia, Lactobacillus,

Flavobacterium and Streptophyta were dominant in the

PC treatment, while Aquabacterium, Novosphingobium,

Pseudomonas and Simplicispira were abundant in the

PCC communities. Some enriched OTUs were common

in different communities (Fig. S4, Supporting informa-

tion), demonstrating that similar taxonomic/functional

groups might contribute to the degradation of the tested

organic pollutants.

Species–time and time–decay relationships

The accumulation of species richness was estimated by

measuring the STRs, which were significant among the

four treatments (P < 0.05), indicating an increase in the

cumulative species richness over time. PHE communi-

ties had the lowest STR exponent (0.76), while PC and

PCC communities had the highest exponents (0.80); C18

was only slightly lower (0.79). Moreover, significant

TDRs were observed in the microbial communities that

responded to the four treatments, as estimated by a lin-

ear regression from the log-transformed microbial com-

munity similarity based on 1 minus Bray–Curtis
dissimilarity (Fig. 4). The microbial community tempo-

rary turnover slopes (w) were increased by �0.33 for

PHE, �0.38 for PCC, �0.51 for PC and �0.59 for C18.

The observation of significant STRs and TDRs strongly

indicates the occurrence of microbial community suc-

cession during the enrichment process.

Conditionally rare taxa

Based on the coefficient of the bimodal distribution

≥0.90 and an abundance threshold of 0.1% when bloom-

ing, 116 (1.6% of total OTUs), 41 (0.7%), 57 (0.8%) and

33 (0.6%) OTUs were categorized as CRT in C18, PHE,

PC and PCC treatments, respectively. We next explored

the temporal dynamics of microbial communities adapt-

ing to distinct combinations of pollutants. The presence

of highly synchronous CRT in the hierarchical cluster

analysis (Fig. S5, Supporting information) indicated

similar temporal dynamics in the four treatments.

Moreover, the Bray–Curtis dissimilarity between CRT

and the whole community was strongly correlated (the

correlation coefficients ranged from 0.61 to 0.92,

P < 0.001) for all treatments, as demonstrated using the

Mantel test (Pearson method, 9999 permutations). Based

Table 1 ANOSIM and PERMANOVA of microbial diversity in microcosms following different pollutant treatments

Bray–Curtis Weighted UniFrac

ANOSIM ADONIS ANOSIM ADONIS

R P R2 P R P R2 P

Treatment* 0.5468 0.001 0.3358 0.001 0.4446 0.001 0.3364 0.001

C18 vs. PHE 0.7247 0.001 0.3047 0.001 0.6807 0.001 0.3540 0.001

C18 vs. PC 0.5376 0.001 0.2189 0.001 0.5869 0.001 0.2641 0.002

C18 vs. PCC 0.5238 0.001 0.2123 0.001 0.4269 0.001 0.2305 0.001

PHE vs. PC 0.3264 0.004 0.1695 0.003 0.2847 0.002 0.1517 0.003

PHE vs. PCC 0.176 0.015 0.1144 0.003 0.2302 0.001 0.1480 0.001

PC vs. PCC 0.468 0.002 0.1994 0.002 0.334 0.001 0.2006 0.001

*C18 = 500 mg/L n-octadecane; PHE = 500 mg/L phenanthrene; PC = 250 mg/L phenanthrene + 250 mg/L n-octadecane; and

PCC = 250 mg/L phenanthrene + 250 mg/L n-octadecane + 50 mg/L CdCl2.
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on the Bray–Curtis dissimilarity (Fig. S6, Supporting

information), the CRT accounted for a considerable frac-

tion of the community dissimilarity in different commu-

nities (16.1% in C18, 10.5% in PHE, 26.9% in PC and

26.4% in PCC), despite the relatively low proportion of

OTUs (0.6–1.6%).

Most CRT were treatment-specific (Fig. S7, Support-

ing information) and were assigned to Proteobacteria,

Bacteroidetes, Actinobacteria and Firmicutes, indicating

their broad range of phylogenetic diversity. At the class

level, the CRT were distinct in different communities

(Fig. S8, Supporting information). CRT from C18 were

the most diverse, belonging to 16 classes that were

dominated by Actinobacteria, Gammaproteobacteria, Sphin-

gobacteria and Betaproteobacteria. Most CRT were affili-

ated with Betaproteobacteria and Gammaproteobacteria in

the PHE communities. Gammaproteobacteria dominated

CRT in the PC treatment. Both Gammaproteobacteria and

Flavobacteria were abundant in the PCC treatment.

The co-occurrence networks for different treatments,

which were based on correlations between OTUs (aver-

age relative abundance > 0.001%), revealed the major

topological feature of the CRT. The resulting networks

consisted of 3181, 3262, 3368 and 3053 nodes with

326 160, 254 368, 314 375 and 265 919 edges for C18,

PHE, PC and PCC, respectively. The betweenness

PC PCC

PHE
C18

Cluster 1
223 OTUs (37.4%)

Cluster 12
10 OTUs (1.7%)

Cluster 6
23 OTUs (3.9%)

Cluster 13
25 OTUs (4.2%)

Cluster 3
62 OTUs (10.4%)

Cluster 9
18 OTUs (3.0%)

Cluster 10
62 OTUs (10.4%)

Cluster 5
28 OTUs (4.7%)

Cluster 4
22 OTUs (3.7%)

Cluster 8
12 OTUs (2.0%)

Cluster 7
20 OTUs (3.4%)

Cluster 15
15 OTUs (2.5%)

Cluster 11
9 OTUs (1.5%)

Cluster 2
64 OTUs (10.7%)

Cluster 14
4 OTUs (0.7%)

Fig. 2 Bipartite association network showing positive associations between different treatments (C18, n-octadecane; PHE, phenan-

threne; PC, phenanthrene + n-octadecane; and PCC, phenanthrene + n-octadecane + CdCl2) and significantly associated operational

taxonomic units (OTUs). Node sizes represent the relative abundance levels of OTUs. Edges represent the association patterns of

individual OTUs with treatments. Diamond-shaped nodes represent OTUs that were associated with two or three treatments. White

nodes represent cross-combination OTUs associated with all treatments. The number of OTUs and relative abundance levels are pro-

vided for each cluster. [Colour figure can be viewed at wileyonlinelibrary.com]
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centrality values of the nodes belonging to CRT were

significantly higher than those of other nodes (Fig. 5),

suggesting that CRT were more likely located in core

and central positions within the networks of all treat-

ment communities.

Discussion

Elucidating the mechanisms of microbial succession is a

major goal in the field of microbial ecology. The results

of the analyses that were performed in the present

study revealed similar dynamic patterns in bacterial

communities that responded to different pollutants. The

studied communities displayed higher rates of occur-

rence in terms of new taxa and temporal turnover than

the rates reported in other studies of microbial commu-

nities in air, water and soil samples (Shade et al. 2013).

This suggests that the repeated addition of pollutants

accelerated microbial succession in the tightly con-

trolled microcosms. CRT from distinct communities

occupied central positions in the networks and revealed

a treatment-specific response to individual or combined

pollutants.

Temporal dynamic patterns of microbial taxa in
response to pollutants

Pollutants can have a large influence on the microbial

community structure, and microorganisms are often

able to respond rapidly to environmental changes
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PCC
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Fig. 3 Temporal dynamic patterns of microbial communities during three enrichment phases (I, subcultures 1–3; II, subcultures 4–7;
and III, subcultures 8–10) that were determined using the maSigPro method. Based on OTUs with an average relative abundance

>0.001%, the number of significant operational taxonomic units (OTUs) and total OTUs is provided for each treatment. Temporal

dynamic visualization of significant OTUs is based on cluster analysis for grouping OTUs with similar profiles (displayed as heat-

maps). Each row in the heatmap has been standardized to have a mean of zero and a standard deviation of one. The intensity of the

colour in the heatmap is proportional to the standardized relative abundance of the taxa. The number of significant OTUs for each

cluster is provided for each treatment. [Colour figure can be viewed at wileyonlinelibrary.com]
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(Singh et al. 2010; Jiao et al. 2016). In the present study,

the organic pollutants n-octadecane and phenanthrene

served as the sole energy and carbon sources for

chemoheterotrophs in the microcosms, while the heavy

metal Cd (in the form of CdCl2) functioned as an envi-

ronmental stressor that promoted selection. Dynamic

patterns in the microbial communities during enrich-

ment were explored using MASIGPRO and were similar in

communities that responded to different pollutants

(Fig. 3). Specifically, repression and induction dominated,

while fluctuation was not significant during the enrich-

ment. These findings could be explained by the selec-

tion of microorganisms with a potentially high growth

rate and the elimination of those without the capacity

to adapt as quickly (Vi~nas et al. 2005).

In particular, OTUs associated with induction may be

strongly associated with pollutant degradation, because

these OTUs were increased in terms of relative abun-

dance during enrichment. The dominant enriched OTUs

in the Tsukamurella, Azospirillum and Sphingobacterium

genera in the C18 communities might correlate with

their capacity to degrade hexadecane (for Tsukamurella;

Tebyanian et al. 2013) or alkane (for Azospirillum and

Sphingobacterium; Gałazzka et al. 2012; Giebler et al. 2013).

The enriched genera Delftia, Lactobacillus, Acinetobacter,

Flavobacterium and Streptophyta in the PHE and PC com-

munities have previously been associated with hydro-

carbon degradation (Pichrtov�a et al. 2013; Atlas et al.

2015; Shao et al. 2015; Wu et al. 2016). Meanwhile,

Aquabacterium, Novosphingobium, Pseudomonas and Sim-

plicispira were enriched in communities that were

exposed to CdCl2, indicating possible roles in combined

hydrocarbon degradation and metal tolerance, espe-

cially because the former three genera were previously

identified as hydrocarbon degraders (Masuda et al.

2014; Xia et al. 2014; Yun et al. 2014). Interestingly, even

though the initial inoculum used in the present study

was collected at a site that was ~360 km away from

where the inoculum was collected for our previous

study (Jiao et al. 2016), many of the bacterial genera

were similar. This finding suggests that similar organic

pollutants may select similar bacterial degraders in dif-

ferent soils, as the physicochemical properties of the

soils in the two studies were quite different.

The MASIGPRO method is usually used with microarray

or RNA-seq data to identify differential expression
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profiles in time-course experiments (D�ıaz-Gimeno et al.

2011; Nueda et al. 2014). Our results showed that MASIG-

PRO could also reveal the dynamic patterns of microbial

communities based on 16S rRNA gene metagenomic

data.

Characteristics of newly selected taxa and the microbial
turnover rate

Species–time relationship and TDR have frequently

been used to probe plant and animal communities (Pre-

ston 1960; McNaughton 1977; Ives et al. 2003; Ives &

Carpenter 2007) and to analyse microbial succession in

microcosm communities (Shade et al. 2013). The STR

exponent can give an indication of the rate at which

new taxa are observed in a community over time, and a

higher exponent indicates that a greater number of

newly introduced taxa are present (Preston 1960). In

our study, the tightly controlled microcosms provided a

closed environment; hence, new taxa could not be intro-

duced through dispersal. We speculate that the newly

detected taxa may be derived from taxa that are present

at low levels in the original inoculum. A previous study

demonstrated that the vast majority of taxa in an

ecosystem remain present at all times, but their propor-

tions may vary. Variations in community composition

are due to changes in the relative abundance of taxa,

rather than extinction and recolonization (Caporaso

et al. 2012). An STR exponent between 0.76 and 0.80

suggested that more new detected taxa appeared in the

communities as the enrichment process advanced.

For comparison, STR exponents from microbial

communities that were grown in a suite of nonpolluted

habitats, including air, seawater, flowers, soil and fresh-

water, ranged from 0.24 to 0.61 (Shade et al. 2013). The

rate of newly detected taxa in the enriched microcosms

was clearly higher compared with the natural environ-

ment.

To confirm this observation, the STRs of microbial

communities in the microcosms were estimated using

data from our previous study (Jiao et al. 2016), which

involved a similar experimental design, but with differ-

ent soil samples. Specifically, the physicochemical prop-

erties of the two soil samples were very different,

especially the degrees of contamination (data not

shown). The STRs for these microcosms in our previous

study were also significant, with exponents ranging

from 0.72 to 0.77, verifying the observation described

above. The higher rate of newly identified detected taxa

in the enriched microcosms could be due to the fluctu-

ating abiotic conditions during the degradation of the

organic pollutants (Shade et al. 2013). Based on these

results, we speculate that the higher rate of newly

detected taxa over time may alter the balance of micro-

bial ecosystems in soils that are continually polluted

with oil or other organic pollutants.

Time–decay relationships also provide information on

community succession dynamics, and temporary turn-

over slopes (w) estimate the rate of temporal change in

community structure. A community with a slope of

zero does not change over time, whereas a more nega-

tive slope indicates a faster rate of community temporal

turnover (Nekola & White 1999). In our study, the

TDRs were significant for microbial communities in all
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treatments. A temporal decay in community similarity

underlies key ecological principles and appears to be

universal in microbial ecosystems (Korhonen et al. 2010;

Gonzalez et al. 2012). In previous studies, the turnover

slopes in the air, seawater, flowers, soil and freshwater

habitats from temporal scales of 1 day to 6 years ran-

ged between 0 and �0.3 (Oliver et al. 2012; Hatosy et al.

2013; Liang et al. 2015). The much greater turnover

slopes in the present study (�0.33 to �0.59) indicate the

rapid elimination and replacement of species through

selection in response to different pollutants.

Our previous analysis of TDRs for the microbial

communities in the microcosms (Jiao et al. 2016) indi-

cated that they were also significant, with turnover

slopes ranging from �0.31 to �0.57 (Fig. S9, Support-

ing information). This finding provides further evi-

dence that turnover slopes are higher in microcosms

than in natural habitats. The possible reasons for this

difference are as follows: (i) the closed microcosm sys-

tems ensured that the pollutants could directly affect

microbial population dynamics without disturbance

from other environmental factors (Vi~nas et al. 2005)

and (ii) the repeated introduction of pollutants placed

a persistent selection pressure on the communities,

and they accelerated the elimination and replacement

of less adaptable species; this resulted in a rapid re-

equilibration of the microbial community in which the

members that could adapt quickly thrived. Future

work should be conducted in natural habitats to

understand the effect of the repeated introduction of

pollutants on microbial succession in more complex

environments.

Conditionally rare taxa reveal a treatment-specific
response and central locations in the network

Rare microorganisms are receiving increased attention

because they have ecologically important roles in ensur-

ing microbial diversity, in that they function as key-

stone species in microbial communities and mediate

biogeochemical processes (Galand et al. 2009; Jones &

Lennon 2010; Pester et al. 2010; Sauret et al. 2014). The

detection of CRT may facilitate the identification of rare

taxa that play potentially critical ecological roles under

certain conditions (Shade et al. 2014). In the present

study, we detected CRT in different communities, and

we observed similar lineages between subsets of CRT

(Fig. S8, Supporting information) and the entire com-

munity (Fig. S3, Supporting information). For example,

Gammaproteobacteria were abundant in all CRT subsets

and in all communities. In PHE communities, Betapro-

teobacteria was the dominant group, and Flavobacteria

was the most abundant in PCC communities. Therefore,

the observed distribution of CRT in communities that

responded to different pollutants indicated a treatment-

specific response. This finding suggests that rare but

adaptable taxa may thrive under particular conditions

following a strong selection pressure and species sort-

ing in response to different pollutants. Additionally,

CRT contributed substantially to the temporal variabil-

ity of different communities. The variation in the domi-

nant taxa determined a large fraction of the community

dissimilarity. Taxa capable of ‘booming and busting’

(CRT) occur widely and contribute to the microbial

community dynamics as they are able to expand

rapidly under certain conditions (Shade et al. 2014).

Thus, our results suggest that some rare microorgan-

isms can effectively act as seed banks, while their popu-

lation densities are largely driven by environmental

conditions, rather than the episodic growth of oppor-

tunists.

In co-occurrence network analysis, betweenness cen-

trality is a topological feature that represents the poten-

tial of an individual node to influence interactions

between other nodes in the network (Greenblum et al.

2012). A high betweenness centrality value indicates a

core and central location in the network, whereas a low

betweenness centrality value indicates a more periph-

eral location (Ma et al. 2016). In our study, nodes

belonging to CRT consistently displayed higher

betweenness centrality values than other nodes. This

finding suggests that CRT occupied core and central

positions, and they had a pronounced influence on

other interactions in the microbial networks. According

to a previous study on CRT from different environ-

ments, including air, seawater, freshwater and brewery

wastewater, some CRT may be indicators of environ-

mental change that can be used to identify the physical,

chemical or biological drivers of microbial dynamics

(Shade et al. 2014). Therefore, the results of the present

study suggest that rare taxa may be capable of thriving

when provided with suitable conditions, and they may

play vital roles in regulating microbial interactions in

response to environmental changes.

Conclusions

In the present study, we investigated the temporal

dynamic patterns of microbial communities that

responded to pollutants in microcosms. Similar

dynamic patterns were observed for bacterial communi-

ties responding to different pollutants, and repression

and induction dominated the dynamic patterns during

enrichment. High rates of newly detected taxa and

microbial temporal turnover in microcosms indicated a

high rate of microbial succession during enrichment.

Additionally, CRT from distinct communities revealed

treatment-specific responses to individual or combined

© 2016 John Wiley & Sons Ltd
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pollutants, and they suggested that initially rare taxa

might play vital roles in regulating microbial interac-

tions in response to environmental changes. The func-

tional succession associated with microbial community

dynamics in response to pollutants should be further

investigated.
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