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Horizontal gene transfer drives
adaptive colonization of apple trees
by the fungal pathogen Valsa mali
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Published: 16 September 2016 Horlzorlntal gene t_ransft.er (HGT). ofterr has strt?ng benefits forf_ungl. In a study of .samples from apple .
. canker in Shaanxi Province, China, diverse microbes, along with the necrotrophic pathogen Valsa mali,
. were found to colonize the apple bark, thus providing ample opportunity for HGT to occur. In the
. present study, we identified 32 HGT events in V. mali by combining phyletic distribution-based methods
. with phylogenetic analyses. Most of these HGTs were from bacteria, whereas several others were from
eukaryotes. Three HGTs putatively functioned in competition with actinomycetes, some of which
showed a significant inhibitory effect on V. mali. Three HGTs that were probably involved in nitrogen
. uptake were also identified. Ten HGTs were thought to be involved in pathogenicity because they
. were related to known virulence factors, including cell wall-degrading enzymes and candidate effector
. proteins. HGT14, together with HGT32, was shown to contribute to bleomycin resistance of V. mali.
‘' These results suggest that HGT drives the adaptive evolution of V. mali. The HGTs identified here
. provide new clues for unveiling the adaptation mechanisms and virulence determinants of V. mali.

: Horizontal gene transfer (HGT) is the stable transmission of genetic materials between species through any
- mechanism other than vertical inheritance'. HGT plays a significant role in the evolution of prokaryotic lineages,
. such as by providing novel genes involved in pathogenicity and contributing to adaptive traits>*. In eukaryotes,
: compared with prokaryotes, there is less evidence for functional HGT, but the phenotypic consequences can also
© be significant in the adaptive evolution of eukaryotes*. Hundreds of fungal genomes are now available, and a
. growing body of data suggest that HGT has had a profound impact on the evolution of pathogenic traits in fungal
. pathogens>. When considering their functions in infection processes and ecological niches, HGTs in fungi can
© be divided into the following three categories: those competing with other microbes (antimicrobial genes’” and
secondary metabolite toxins'), those utilizing nutrients (membrane transporter) and those interacting with hosts
(reviewed in Soanes and Richards, 2014°). Therefore, understanding of functional HGT in fungal pathogens
should facilitate the discovery of novel genes involved in niche adaptation, particularly in pathogenicity.
: Valsa canker caused by the ascomycetous Valsa mali, is one of the most destructive diseases affecting apple
* trees, causing significant yield losses in eastern Asia®’. This necrotrophic pathogen infects trees mainly through
. wounds and results in severe maceration and necrosis of bark tissues'’. The dead and dying tissues can be sub-
. sequently colonized by diverse saprophytes, thus implying that these microbes occupy the same environment as
V. mali and therefore may contribute genes to V. mali via HGT, because shared habitat is a major factor driving
. transfers">!!. Thus, V. mali may have ample opportunity for HGT to occur. We have previously reported the
© V. mali genome sequence, which suggests a potential adaptation to colonize woody bark'2 In the present study,
. phyletic distribution-based methods!*!* and phylogenetic analyses were used to identify potential HGTs in
- V. mali. The functions of two HGTS of interest were verified experimentally. The results will provide new clues for
unveiling adaptation mechanisms and virulence determinants in V. mali.

Results and Discussion
. Identification of HGT genes. Identifying HGT in eukaryotes is difficult because of their highly com-
. plex genome content. The gold standard for identifying HGT with confidence is phylogenetic incongruence'®,
although its throughput is much lower than that of surrogate methods especially when hundreds of genes or even
a genome are being analysed. Thus, we used the effective surrogate tool HGT-Finer" to identify HGT candidates
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HGT ID* SeqID Length/aa | Intron SPb Donor group Recipient taxa LPI¢
HGT1 VMI1G_00056 456 0 No Bacteria Fungi 0.642
HGT2 VM1G_00616 708 0 Yes Bacteria Fungi 0.658
HGT3 VMI1G_00776 551 0 No Bacteria Fungi 0.658
HGT4 VMI1G_00799 646 0 Yes Bacteria Fungi 0.622
HGT5 VMI1G_01172 285 1 No Bacteria Fungi 0.628
HGT6 VMI1G_01377 249 1 No Bacteria Fungi 0.658
HGT7 VMI1G_01892 359 0 No Bacteria Fungi 0.658
HGT8 VM1G_02284 637 0 No Basidiomycota Ascomycota 0.658
HGT9 VMI1G_02549 440 1 No Bacteria Fungi 0.632
HGT10 VMI1G_02555 349 1 No Bacteria Fungi 0.623
HGT11 VM1G_02910 476 8 No Basidiomycota Ascomycota 0.462
HGTI12 VM1G_02970 438 5 No Ascomycota Basidiomycota 0.658
HGT13 VM1G_03090 548 0 No Bacteria Fungi 0.640
HGT14 VM1G_03108 146 2 No Bacteria Fungi 0.594
HGT15 VMI1G_03556 300 2 No Ascomycota Basidiomycota/Bacteria 0.587
HGT16 VM1G_04133 390 0 No Bacteria Fungi 0.594
HGT17 VM1G_04190 285 0 No Bacteria Fungi 0.632
HGT18 VM1G_04692 146 2 Yes Fungi Oomycetes 0.622
HGT19 VMI1G_04714 767 0 No Bacteria Fungi 0.658
HGT20 VM1G_04727 317 0 No Fungi Oomycetes 0.658
HGT21 VMI1G_05155 544 3 No Fungi Bacteria 0.640
HGT22 VM1G_05405 840 0 No Bacteria Fungi 0.615
HGT23 VM1G_05720 201 0 No Bacteria Fungi 0.593
HGT24 VM1G_05918 452 1 No Bacteria Fungi 0.628
HGT25 VM1G_07081 319 0 No Bacteria Fungi 0.618
HGT26 VMI1G_08958 189 0 No Bacteria Fungi 0.128
HGT27 VMI1G_09114 301 1 No Bacteria Fungi 0.658
HGT28 VMIG_10126 333 0 No Bacteria Fungi 0.103
HGT29 VM1G_10361 258 0 No Bacteria Fungi 0.628
HGT30 VMIG_10685 486 0 No Bacteria Fungi 0.128
HGT31 VM1G_10997 252 0 No Bacteria/Archaea Fungi 0.108
HGT32 VMIG_05783 420 0 No Bacteria Fungi 0.108
Table 1. Summary of HGTs identified in V. mali. “HGTs in V. mali were identified by the phyletic

distribution-based software HGT-Finer!'® and phylogenetic analyses; "N-terminal signal peptide predicted by
SignalP v4.1; °LPI scores (<0.75) calculated by another phyletic distribution method DarkHorse'.

and then verified the results gene-by-gene with phylogenetic analysis. In total, 345 candidates were identified by
HGT-Finer, and 32 HGT genes were verified by phylogenetic analyses, manual checking and another phyletic
distribution-based method, DarkHorse'* (Table 1, Supplementary Files).

Most of these HGTs were derived from bacterial sources (Table 1), probably because prokaryote-to-fungal
HGT is more likely than eukaryote-to-fungal HGT. Consistently with their prokaryotic origin, 18 of the 25 bac-
terial HGTs had no introns. We also identified five HGTs that were transferred from ascomycetes into bacte-
ria (HGT15, HGT21), basidiomycetes (HGT12, HGT15) and oomycetes (HGT18, HGT20). Compared with
prokaryote-fungi transfers, fungi-fungi transfers, especially among closely related species, are difficult to identify
because of independent gene loss'”. Thus, most of the fungi-fungi HGT candidates identified by HGT-Finder
were not well supported by phylogenetic analysis. Methods for specifically identifying HGTs among closely
related eukaryotes are currently not available.

Functional annotations showed that the HGTs identified mainly affected enzymes (69%) from diverse meta-
bolic pathways and genes (19%) with unknown functions (Table 2). The roles of HGTs in their recipient organ-
isms are often unknown without further experiments'®. Whether an HGT is expressed under specific conditions
might provide clues regarding its adaptive value. Therefore, transcriptomes of V. mali during infection of apple
bark, reported by us previously'®, were used to identify HGTs potentially involved in pathogenicity. Six HGTs
were strongly upregulated during infection (Table 2), thus suggesting a potential role in V. mali-apple interaction.
Their specific adaptive values will be discussed in the following section.

Putative adaptive value of HGTs in V. mali. Competing with other microbes. To protect themselves
against competitors, microbes often produce secondary metabolite toxins that kill other microbes. The severe
maceration and necrosis of apple bark caused by V. mali provide ample opportunity for other microbes to colo-
nize. HGT14 and HGT32, bleomycin (Bm) resistance proteins, might enable V. mali to be resistant to bleomycin
which is a family of antibiotics produced by actinomycetes that cause cell death in eukaryotes and prokaryotes?.
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HGTID | Description Pfam annotation Putative function GFOLD(0.01)* 1stRPKM® 2ndRPKM*
HGT1 Succinyl-diaminopimelate desuccinylase PF01546: Peptidase_M20 Lysine biosynthesis 0.00 3.88 2.86
HGT2 Six-hairpin glycosidase PF06202: GDE_C Cell wall degradation 0.00 0.96 0.27
HGT3 Hypothetical protein NA NA —3.67 10.87 0.00
. . PF02129: Peptidase_S15; .
HGT4 Hypothetical protein PF08530: PepX_C Cell wall degradation 5.79 64.34 2527.67
HGT5 Polyketide synthesis O-methyltransferase PF04072: LCM lS)?condary m etabolites 173 34.00 87.16
iosynthesis
HGT6 | Phosphomannomutase PF03332: PPM ;ﬁ‘;‘s‘fe biosynthetic 0.66 189.17 221.25
HGT7 Adenosine deaminase PF00962: A_deaminase Purine metabolism —0.38 24.05 7.10
. PF00732: GMC_oxred_N; .
HGTS Glucose oxidase PF05199: GMC._oxred_C Cell wall degradation 0.37 13.60 16.63
HGT9 Salicylate hydroxylase PF01494: FAD_binding 3 SA degradation 1.21 0.55 0.88
HGT10 | Dioxygenase PF02900: LigB Degradation of plant toxin —1.08 18.57 3.88
HGT11 | MFS transporter PF07690: MFS_1 dipeptide transporter 0.00 0.06 0.00
HGT12 | Fructosyl amino acid oxidase PF01266: DAO Amino acid metabolism —0.33 5.78 1.77
HGT13 | 2-polyprenyl-6-methoxyphenol hydroxylase PF01494: FAD_binding_3 Ljabti?‘}vlzi‘r;one biosynthetic —6.44 398.83 1.94
HGT14 | Bleomycin resistance protein PF12681: Glyoxalase_2 Antibiotics resistance —0.06 222.73 136.57
HGT15 | Short chain dehydrogenase PF00106: adh_short NA 0.00 0.09 0.00
HGT16 | Pentachlorophenol 4-monooxygenase PF01494: FAD_binding_3 g;f‘;‘;’;"ne biosynthetic 0.20 9.56 11.25
HGT17 | Uridine nucleosidase PF01156: IU_nuc_hydro Nucleotide metabolism 0.00 0.43 0.00
HGT18 | Hypothetical protein NA Candidate effector protein 3.37 23.89 197.11
HGT19 | Beta-L-arabinofuranosidase PF07944: Glyco_hydro_127 Cell wall degradation 1.80 3.27 12.24
HGT20 | Quinone oxidoreductase PF05368: NmrA Nitrogen metabolite 6.57 17.02 1226.57
repression
HGT21 | Carotenoid oxygenase PF03055: RPE65 NA —0.32 38.18 17.69
HGT22 | Hypothetical protein NA NA —1.07 2.83 0.32
HGT23 | Hypothetical protein NA NA 0.00 0.00 0.24
HGT24 | N-ethylammeline chlorohydrolase PF01979: Amidohydro_1 Drug degradation 0.63 3.70 5.67
HGT25 | Dioxygenase PF12697: Abhydrolase_6 NA —4.93 108.18 0.00
HGT26 | Calpastatin PF08837: DUF1810 NA 0.00 0.05 0.00
HGT27 | Esterase/lipase PF07859: Abhydrolase_3 Cell wall degradation 0.98 14.11 23.78
HGT28 | Thiosulfate sulfurtransferase PF00581: Rhodanese Cyanide detoxification —0.31 141.97 70.59
HGT29 | 5-formyltetrahydrofolate cyclo-ligase PF01812: 5-FTHF_cyc-lig NA 2.21 1.93 9.56
HGT30 | Hydrolase PF12697: Abhydrolase_6 NA 0.69 1.58 2.09
HGT31 | Hypothetical protein PF07302: AroM NA —0.11 59.28 31.09
HGT32 | Bleomycin resistance protein PF12681: Glyoxalase_2 Antibiotics resistance —0.59 0.72 0.22

Table 2. Putative function and transcription profile of HGTs in V. mali. *Log, (fold-change) calculated by
GFOLD with a significant cutoff of 0.01; The transcriptomes of V. mali during infection' were re-analysed

according to Yin et al.!; PRPKM of pure mycelium; “RPKM of infected apple bark.

To test this hypothesis, the capacity of Bm resistance of V. mali, Fusarium graminearum and Aspergillus nidulans
was examined under three levels of Bm stress (10, 50 and 100 pg/ml). Compared wiht F. graminearum and
A. nidulans, V. mali was significantly more resistant (Figs 1a and S2). RT-qPCR analysis showed that HGT32
but not HGT14 was induced at a high level (50 pg/ml) of Bm stress (Fig. 1b). However, a null mutant of HGT32
did not show reduced resistance (Fig. 1d), and HGT14 of the HGT32 null mutant was induced under Bm stress
(50 pg/ml) at 36 hpi (Fig. 1c). Thus, we generated the double deletion mutant of HGT14 and HGT32, which
showed a significantly reduced resistance compared with the resistance of the wild type and HGT32 null mutant
(Fig. 1e). These results suggest that HGT14, together with HGT32, contributes to Bm-resistance.

Another gene predicted to be associated with competition was HGT5, an O-methyltransferase involved in
polyketide biosynthesis (Table 2). We reasoned that HGT5 probably functions in competition rather than in
synthesizing toxic polyketides, because the genes involved in polyketide biosynthesis are often clustered in fungi
and V. mali acquired HGTS5 as a single gene from actinomycetes. HGT5 in V. mali is probably used as a protective
device to modify or detoxify specific toxic polyketides produced by actinomycetes, as is the case for blmB in the
bleomycin biosynthesis gene cluster. The blmB gene encodes a N-acetyltransferase, which modifies and inacti-
vates bleomycin, conferring self-protection; moreover, other bacteria transformants carrying blmB may also gain
bleomycin resistance?!. In addition, three of the five fungi that acquired HGT5 were non-pathogens, including an
endophytic Pestalotiopsis fici, an endomycorrhizal fungus Oidiodendron maius and the saprotrophic Penicillium
roqueforti (Supplementary Files).
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Figure 1. HGT14, together with HGT32, contributes to bleomycin resistance. (a) Inhibition ratios of radial
growth of three fungi by bleomycin. (b) Relative expression of HGT14 and HGT32 genes under bleomycin
stress (50 ug/ml). (c) Relative expression of HGT14 gene of the HGT32 null mutant under bleomycin stress

(50 pg/ml). (d) Inhibition ratios of radial growth of the HGT32 null mutant by bleomycin (20 pg/ml).

(e) Inhibition ratios of radial growth of the HGT14 HGT32 double deletion mutant by bleomycin (50 pg/ml).
Bleomycin resistance assays and qRT-PCR analyses were repeated three and three times, respectively. Error bars
represent the mean S.D. and asterisks (**) indicate significant differences (P < 0.01).

Intriguingly, these three HGTs are all involved in competition with actinomycetes. Indeed, an endophytic
actinomycete strain Hhs.015 isolated from cucumber root?? significantly inhibits the conidial germination and
mycelial growth of V. mali®. These findings suggest that HGT has driven the adaptive evolution of V. mali for
competing with other microbes.

Nutrient uptake. The types of nutrients that can be utilized by fungi are determined largely by their membrane
transporters, because these microbes feed exclusively by osmotrophy. Thus, acquiring a novel transporter gene
might enable fungi to utilize a new source of nutrition or gain a competitive advantage against other microbes
in their ecological niches. HGT11, a major facilitator superfamily (MES) transporter of a basidiomycetous
source, was found only in the genus Valsa (including the pear canker pathogen V. pyri) (Tables 1 and 2 and
Supplementary Files). HGT11 has significant similarity to the Saccharomyces cerevisiae protein DAL5, an allan-
toate/dipeptide permease (family 2.A.1.14.4) in the Transporter Classification Database. DALS5 transports several
substrates and is sensitive to nitrogen catabolite repression*-*%. Thus, by gaining HGT11, V. mali might possibly
utilize new sources of nitrogen.

Lysine is synthesized de novo by the a-aminoadipate (AAA) pathway in higher fungi, and by the diamino-
pimelate (DAP) pathway in bacteria and plants?. The two pathways evolved separately in organisms, and no
organism is known to possess both pathways*. However, we found that some higher fungi acquired the DapE
gene (HGT1) in the DAP pathway by horizontal gene transfer (Supplementary Files). HGT1 was transferred
from Proteobacteria, which use the succinylase pathway (a variant of the DAP pathway ) for lysine biosynthesis®'.
HGT1 was also found in many other fungi including Colletotrichum graminicola. The orthologous gene
GLRG_10812 was horizontally transferred from bacteria®. Further analysis showed that the V. mali genome
contained all of the essential genes of the AAA pathway and six of the nine genes in the succinylase pathway
(Supplementary Table S1). However, in the case of selfish genetic elements®, the incomplete DAP pathway might
still work through utilizing intermediates synthesized by symbiotic bacteria in the environment, thus providing a
strong benefit to acquiring nitrogen from the nitrogen-limited apple bark.

Nitrogen is essential for growth, and disruption of nitrogen nutrition is often associated with the virulence of
phytopathogens®**. Nitrogen regulation is relatively well studied in yeast and filamentous fungi*>*¢. Glutamine
and ammonium are preferentially used as nitrogen sources, and the NmrA protein can be activated to repress
nitrogen catabolic genes when these sources are sufficient®. NmrA is highly conserved in filamentous ascomy-
cetes and is also found in oomycetes which gain NmrA by HGT?. In this study, we found an HGT event of
fungus-oomycete NmrA (HGT20), which appears to be a potential virulence factor, because both the donor and
recipient groups are phytopathogens (Fig. 2). Indeed, the gene that encodes HGT20 was markedly upregulated
(log,-fold change > 6) during V. mali infection (Table 2), thus suggesting that readily assimilated nitrogen sources
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Figure 2. Maximum likelihood phylogenetic tree of HGT20 as an example of fungi-oomycetes HGT.
HGT20 was transferred from fungal pathogens into Phytophthora spp.

were sufficient in the infected tissues and that NmrA might be important for regulating selective nitrogen utili-
zation during infection. Consistently with this hypothesis, three of the five ammonia transporter genes have also
been found to be significantly upregulated in planta'?. Functions of HGT20 in nitrogen regulation and virulence
in V. mali, and especially in oomycetes whose nitrogen regulation is poorly understood, are worth investigating.

Additional HGTs predicted to be associated with nutrient uptake include a phosphomannomutase (HGT6)
and a uridine nucleosidase (HGT17), which putatively function in the mannose biosynthetic process and nucle-
otide metabolism, respectively. A putative fructosyl amino acid oxidase (HGT12), which putatively functions
in catabolizing naturally occurring fructosyl amino acids®, was also identified. Intriguingly, most of these
nutrient-related HGTs were predicted to be involved in obtaining nitrogen, whose content in apple bark is rel-
atively low®. Therefore, these nitrogen-related HGTs of V. mali are possible drivers of adaptive evolution in
nitrogen uptake.
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Interacting with the host.  After pathogen attack, many plants produce low molecular weight antimicrobial com-
pounds. Likewise, several cytochrome P450 genes potentially involved in secondary metabolite biosynthesis in
apples are upregulated after V. mali infection®’. To counteract these toxic compounds, fungi possess membrane
transporters that pump the toxins out of the cell or possess enzymes to detoxify them. Two enzymes with roles
in detoxifying phytoalexins are HGT10 (dioxygenase) and HGT28 (thiosulphate sulphurtransferase). HGT10
putatively functions in the degradation of aromatic compounds via its LigB domain. HGT28 is found only in
the genus Valsa and is a mitochondrial enzyme that detoxifies cyanide*!. The production of poisonous hydrogen
cyanide is known to be used by plants to protect against insects and other herbivorous animals*? and has been
recently reported to be required for inducible pathogen defence in Arabidopsis®. To overcome plant cyanogene-
sis, arthropods have been found to detoxify plant-produced cyanide by acquiring a horizontally transferred gene
involved in sulphur amino acid biosynthesis in bacteria*. In the current study, we found another HGT event of
bacterial origin, which might enable fungi to detoxify cyanide through a different mechanism (HGT28). V. mali
infects apple trees mainly through wounds!?, where cyanide production may be induced. Thus, we speculate that
the poisonous cyanide itself and its induced defence might possibly be inhibited or overcome by HGT28 if this
protein is functional during the V. mali-apple interaction.

As a typical necrotrophic pathogen on apples, V. mali can degrade woody tissues through secreted cell
wall-degrading enzymes (CWDEs)!*!>1°, Diverse HGTs that putatively function in degrading plant cell wall have
been found in eukaryotic plant pathogenic microbes®. In the genome of V. mali, at least six CWDEs involved in
HGT events were identified in the current study (Table 2). Among these, only HGT2 and HGT4 contained the
N-terminal signal peptide, thus suggesting that they are probably secreted proteins. However, most of the HGT2
proteins of the donor bacteria and the recipient fungi had no N-terminal signal peptide, except several proteins
from two clades, including V. mali (Fig. 3). HGT2, a putative hydrolase and peptidase, was strongly activated dur-
ing infection (Table 2), and null mutants of the HGT2 gene in V. mali show a significantly reduced virulence on
apple trees (Feng et al., unpublished). These results suggest that HGT2 is a potentially important virulence factor
in V. mali. Beyond their enzymatic functions, CWDE:s can also act as a microbe-associated molecular pattern
(MAMP) that activates plant defence responses, as reported for endopolygalacturonases (pectinase) of Botrytis
cinerea® and a glycoside hydrolase family 12 (GH12) protein of Phytophthora sojae*. Exploration of the specific
functions of HGT2 during V. mali-apple interactions is in progress.

Salicylic acid (SA) is an important plant hormone involved in defence responses against biotrophic patho-
gens?. To counteract SA-induced defence responses, pathogens have several weapons that target and disturb SA
biosynthesis and signalling, such as salicylate hydroxylase, which degrades SA*%. Furthermore, genes involved
in apple SA signalling are significantly upregulated and enriched after V. mali infection®. In addition, a puta-
tive salicylate hydroxylase (HGT9) transferred from bacteria was identified in V. mali (Supplementary Files).
Nevertheless, only one of the three salicylate hydroxylases is active in the smut fungus Ustilago maydis*, and there
are also three salicylate hydroxylase homologues in V. mali (data not shown). Another protein that probably func-
tions in regulating plant immunity is HGT18, a small secreted protein with unknown function that was strongly
activated during infection (Table 2). HGT18 seems to be a candidate effector protein with these characteristics,
and it was transferred from fungi to phytopathogenic oomycetes (Phytophthora spp.) (Supplementary Files).

Conclusion

By combing phyletic distribution-based methods and phylogenetic analyses, we identified 32 HGT events in
the apple canker pathogen V. mali. Most of these HGTs were of bacterial origin, and several were of eukaryotic
origin. Three HGTSs putatively functioned in competition with actinomycetes some of which showed a significant
inhibitory effect on V. mali. Three HGTs that are likely to be involved in nitrogen uptake were identified in V. mali,
which can effectively utilize nitrogen in apple bark. Ten HGTs were thought to be involved in pathogenicity, as
they were related to known virulence factors. HGT14, together with HGT32, was shown to contribute to bleomy-
cin resistance of V. mali. These results suggest that HGT drives the adaptive evolution of V. mali.

Methods

Identification of HGT candidates. The proteome of V. mali'? was searched using blastp (v2.2.30+) against
GenBank NR database (data-version 20150706). The blastp output was then subjected to HGT-Finer (R thresh-
old ranging from 0.2 to 0.9, Q value < 0.01)"* to identify HGT candidates. To confirm the results of HGT-Finder,
another phyletic distribution-based method, DarkHorse!'* was used to calculate LPI (lineage probability index)
scores of HGTs.

Phylogenetic analysis. For phylogenetic analysis, the protein sequences of the top 100 blastp hits for each
HGT candidate were retrieved from GenBank. Multiple sequence alignments were performed using MAFFT
(v7.245)%, and poorly aligned regions were removed by trimAl (v1.4)*!. Maximum likelihood phylogenetic
trees were constructed using IQ-TREE (v 1.3.11)%? with the best-fit substitution model automatically selected,
and branch supports were assessed with ultrafast bootstrap®® and SH-aLRT test (1000 replicates). Phylogenetic
trees were viewed and produced by iTOL (v2, http://itol.embl.de/)** and FigTree (v1.4.2, http://tree.bio.ed.ac.uk/
software/figtree/).

Functional annotation of HGTs. The putative functions of HGTs were predicted with the Pfam®®, NCBI
CDD*¢ and KEGG*” databases. The N-terminal signal peptide was predicted with the SignalP 4.1 server®®. The
expression data were extracted from Yin ef al.!2

Bleomycin resistance assays. The bleomycin resistance of three fungi (Valsa mali, Aspergillus nidu-
lans and Fusarium graminearum) was evaluated under three levels of bleomycin stress (10, 50 and 100 ug/ml).
Fungal isolates were grown on potato dextrose agar (PDA) media at 25°C in the dark. Diameters of colonies were
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Figure 3. Maximum likelihood phylogenetic tree of HGT4 as an example of bacteria-fungi HGT. Only
several proteins from two clades contain the N-terminal signal peptide.

measured two days post inoculation. Each assay was repeated ten times. The data were analysed with ANOVA or
t-test by using the online tool VassarStats (http://www.vassarstats.net/).

Functional studies on bleomycin resistance genes.  For RT-qPCR analysis, fungi were grown in potato
dextrose broth at 25°C in the dark for two days. Total RNA was extracted using a Quick RNA isolation Kit
(Huayueyang Biotechnology, Beijing, China) according to the manufacturer’s instructions. First strand cDNA syn-
thesis and qPCR were performed using a RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific, Hudson,
NH, USA) and RealStar Green Mixture (GenStar, Beijing, China), respectively. The qPCR assays were performed
with a CFX96 Connect™ Real-Time System (Bio-Rad, Hercules, CA, USA), and G6PDH gene was used as an
internal reference®. The genes were knocked out according to a previously described method (Figure S3)%.
Primers used for RT-qPCR and gene deletion are listed in Table S2.
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