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The emergence of epitranscriptome opened a new chapter in gene regulation.
5-methylcytosine (m°C), as an important post-transcriptional modification, has been
identified to be involved in a variety of biological processes such as subcellular
localization and translational fidelity. Though high-throughput experimental technologies
have been developed and applied to profile m®C modifications under certain conditions,
transcriptome-wide studies of m°C modifications are still hindered by the dynamic
and reversible nature of m°C and the lack of computational prediction methods. In
this study, we introduced PEA-m5C, a machine learning-based m°>C predictor trained
with features extracted from the flanking sequence of m°C modifications. PEA-m5C
yielded an average AUC (area under the receiver operating characteristic) of 0.939 in
10-fold cross-validation experiments based on known Arabidopsis m>C modifications.
A rigorous independent testing showed that PEA-m5C (Accuracy [Acc] = 0.835,
Matthews correlation coefficient [MCC] = 0.688) is remarkably superior to the recently
developed m°C predictor IRNAM5C-PseDNC (Acc = 0.665, MCC = 0.332). PEA-m5C
has been applied to predict candidate m°C modifications in annotated Arabidopsis
transcripts. Further analysis of these m°C candidates showed that 4nt downstream of
the translational start site is the most frequently methylated position. PEA-M5C is freely
available to academic users at: https://github.com/cma2015/PEA-m5C.

Keywords: AUC, Epitranscriptome, machine learning, RNA modification, RNA 5-methylcytosine

INTRODUCTION

The epitranscriptome, also known as chemical modifications of RNA (CMRs), is a newly discovered
layer of gene expression (Meyer and Jaffrey, 2014). With advances in mass spectrometry and
high-throughput sequencing technologies, the field of epitranscriptome is rapidly expanding and
attracting a comparable degree of research interests to DNA and histone modifications in the
field of epigenetics (Helm and Motorin, 2017). Among more than 150 types of CMRs identified,
most of them have been found in transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs) (Hussain
et al., 2013), but some can occur in mRNAs and noncoding RNAs (Machnicka et al., 2013; Pan,
2013; Carlile et al., 2014; Dominissini et al., 2016; David et al., 2017). A growing line of evidences
indicated that CMRs located in both coding and noncoding regions can play essential roles in a
variety of biological processes. For instance, N®-methyladenosine (m®A) sites in 5'-untranslated
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region (UTR) can promote cap-independent translation under
heat stress (Meyer et al., 2015; Zhou et al., 2015); while m®A sites
in coding regions can affect translation dynamics by inducing
steric constraints and destabilizing pairing between codons and
tRNA anticodons (Choi et al., 2016; Zhao et al., 2017). Thus, the
transcriptome-wide annotation of RNA modifications is essential
for fully understanding the biological functions of CMRs.

Compared with those well characterized modifications such
as m®A and N!-methyladenosine (m'A), the transcriptome-
wide annotation of 5-methylcytosine (m>C) modifications
is more challenging. First, bisulfite sequencing technologies
are difficult to implement for profiling m>C modifications
because of the instability of mRNA molecules treated with
bisulfite (Amort et al., 2013; Li et al., 2016). In addition,
other existing high-throughput sequencing technologies,
such as m’C-RIP (Edelheit et al., 2013), can localize m°C
residues to transcript regions of 100-200 nucleotide (nt)
long, but fail to accurately identify m>C modifications at
single-nucleotide solution. Second, because of the reversible
and dynamic nature of m°C (Wang and He, 2014), the
high-throughput sequencing technologies can only capture a
snapshot of m°C modifications under certain experimental
conditions, and cover just a small fraction of the whole
transcriptome of a given sample (Zhou et al., 2016), resulting
in the generation of significant numbers of false negatives
(non-detected true m’C modifications). Third, the base
preferences around the m°C sites are not strong enough,
increasing the difficulties in computational predictions
with traditional statistical approaches. Machine learning
(ML) is a branch of artificial intelligence technology that
has been widely used in engineering, computer science,
informatics and biology (Ma et al., 2014a, 2017; Cui et al,
2015; Libbrecht and Noble, 2015; Zhai et al., 2016). The biggest
advantage of ML systems is that they can automatically learn
interesting patterns from existing datasets and bring about self-
improvement of system performance for accurately predicting
novel knowledge from a new data set (Ma et al., 2014a,b).
Therefore, computational methods coupled with machine
learning technologies may provide an option to accurately
annotate RNA modifications like m>C in the transcriptome-wide
manner.

Until now, iRNAm5C-PseDNC is the exclusive m>C predictor,
which was built using random forest (RF) algorithm based
on sequence-based features, and has been reported to have a
good predictive performance for mammalian m°C prediction
(Qiu et al, 2017). However, because of the lineage-specific
sequence and structural properties differences between plant
and mammalian species, tools developed for mammal species
can’t always retain their original performance when applied to
other organisms (Leclercq et al., 2013; Zhai et al., 2017). This
particular issue underscores the need for accurate transcriptome-
wide m>C prediction tools in plants, which may lay a foundation
for elucidating the mechanisms of formation and the cellular
functions of m>C modifications.

In this study, we developed PEA-m5C, an accurate
transcriptome-wide m°C predictor under a ML framework
with an ensemble of 10 RF-based prediction models. PEA-m5C

was trained with features extracted from the flanking sequence
of m>C modifications, and showed promising performance
when applied to predict m>C modifications in Arabidopsis
thaliana. We further applied PEA-m5C to predict candidate
m°C modifications in annotated Arabidopsis transcripts, and
found that candidate m>C modifications are enriched in the
coding region of mRNAs. In addition, 4-nt downstream of the
translational start site is the most frequently methylated position.
All candidate m®>C modifications have been deposited in a public
database named Ara-m5C for follow-up functional studies.
In order to facilitate the application of PEA-m5C, we have
implemented the proposed model into a cross-platform, user-
friendly and interactive interface with R and JAVA programming
languages.

MATERIALS AND METHODS

Dataset Generation
In this study, we constructed four m°>C datasets: DatasetCV
(cross-validation dataset), DatasetHT (hold-out test dataset),
DatasetIT1 (independent test dataset for samples from the
Arabidopsis silique tissue) and DatasetIT2 (independent test
dataset for samples from the Arabidopsis shoot tissue).
DatasetCV and DatasetHT were constructed based on
m>C modifications in transcripts expressed in the Arabidopsis
root tissue at single-nucleotide resolution using RNA bisulfite
sequencing technology (David et al., 2017). During bisulfite
conversion, unmethylated cytosines were converted into uracils,
while methylated cytosines were not converted. Bisulfite-treated
RNA samples were sequenced to generated 100-nt paired-
end reads using the Illumina HiSeq 2500. Low-quality reads
were processed using Trimmomatic (Bolger et al, 2014),
and the left clean reads were globally mapped to in silico
bisulfite-converted Arabidopsis reference genome sequences
using the RNA mode of B-Solana (Kreck et al, 2012). For
each cytosine site in the Arabidopsis reference genome, the
methylation level was calculated using a proportion statistic:
P = (C+W)/(T+C), where C and T represent the number
of cytosines and thymines in aligned reads at the cytosine
site under analysis, respectively. W specifies the added pseudo
counts (1/8 counts). The false discovery rate (FDR) was
calculated using the R package qvalue (Storey, 2002). Cytosines
were regarded as positive samples (m>C modifications) if they
satisfied the following criteria: methylation level >1% and
FDR < 0.3. After the removal of sequence redundancy, we
finally obtained 1,296 m>C modifications in 885 transcripts
(Table S1). In these 885 transcripts, cytosines were regarded
as negative samples (non-m>C modifications) if they were not
annotated as m>C modifications. In order to avoid over-fitting
and GC bias in training process, we limited the number of
negative samples to be 10 times of positive samples. Thus,
for each positive sample, 10 samples were selected in the
200-nt region around the positive sample, among which GC
content difference is not more than 5%. This allows a similar
distribution of positive and GC-matched negative samples,
which is markedly different from the background distribution
of all cytosines in these 885 transcripts (Figure S1). Note
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that some of the negative samples may in fact be true
m°>C modifications not yet discovered. We randomly divided
these 1,296 positive samples and 12,960 negative samples
into two parts for constructing DatasetCV and DatasetHT,
respectively. The DatasetCV comprises 1,196 positive samples
and 11,960 negative samples, while the DatasetHT has a
balanced number (100) of positive and negative samples
(Table S1).

Using the same criteria mentioned above, another two datasets
(DatasetIT1: 79 positive and negative samples; DatasetIT2:
73 positive and negative samples) were also constructed for
Arabidopsis silique and shoot tissues, respectively (Table S1). Of
note, positive and negative samples in DatasetIT1 and DatasetIT2
were not overlapped with those in DatasetCV and DatasetHT.

Each sample in these four datasets was represented by
a sequence window of 43 nucleotides centered around the
respective cytosine site. For samples near the borders of the
available RNA sequence, the positions missing from the 43-
nt window were filled with “N;” the symbol for unknown.
The Arabidopsis reference genome sequences (TAIR10) and
annotated transcripts used in this study were downloaded
from the Araport 11 database (https://www.araport.org/data/
araportl1).

Feature Encoding

In order to be recognized by ML-based systems, each sample of L-
nt window size, was represented as a numeric vector (length: 4xL
+ 106) using the binary, k-mer and PseDNC encoding schemes.
The details of these three encoding schemes are described in the
following.

Binary Encoding

This encoding strategy generates a vector of 4xL features by
characterizing “A; “C, “G) “U; and “N” with (1, 0, 0, 0), (0,
1,0, 0), (0, 0, 1, 0), (0, 0, 0, 1), and (0, 0, 0, 0) for each sample,
respectively.

K-mer Encoding

In this scheme, the composition of short sequence with
different lengths was considered to explore its potential effect
on the identification of m°C. In order to avoid the curse of
dimensionality, we set k = 1, 2, and 3 to generate 84 features for
calculating the frequency of mononucleotide occurrence (k = 1;
four features), dinucleotide occurrence (k = 2; 16 features) and
trinucleotide occurrence (k = 3; 64 features).

PseDNC Encoding

The pseudo dinucleotide composition (PseDNC) is a widely used
encoding strategy that considers sequential information as well as
physicochemical properties of dinucleotides in the RNA sequence
(Chen et al., 2015, 2017). For each sample, it generates 16+
numeric features, the first 16 of which are features extracted from
adjacent dinucleotide pairs, and the other A are features extracted
from distant dinucleotide pairs (A denotes the maximal distance
between two dinucleotides). The detailed definition of Pse DNC is
presented in Supplementary Data 1.

Development of ML-Based m°C Predictor
Figure 1 illustrates the workflow of PEA-m5C, which consists
of three phases, namely, (A) model construction, (B) model
optimization, and (C) model prediction. Model construction and
optimization were performed on the DatasetCV.

Model Construction

To construct an m°C prediction model, PEA-m5C required
an input of a set of positive and negative samples. These
samples were transformed into a feature matrix using three
different encoding schemes (binary, k-mer, and PseDNC). The
feature matrix was input into the RF algorithm to construct
an m°C prediction model, which consisted of 100 classification
trees. Each of the classification trees was built using a set of
bootstrapped samples and features. The output of the RF-based
m°C prediction model was determined by a majority vote of the
classification trees. The RF algorithm was implemented using the
R package “Rweka” (Hornik et al., 2009), which provides an R
environment to invoke the ML package “weka” (v3.9.1; https://
www.cs.waikato.ac.nz/ml/weka).

Model Optimization

Ten-fold cross-validation experiments were performed to
optimize m°C prediction models in PEA-m5C by iteratively
varying window size and feature number. Cross-validation is
a standard method for estimating the generalization accuracy
of ML systems. In a ten-fold cross-validation, the DatasetCV
was randomly divided into 10 equal subsets and each subset
was iteratively selected as a testing set for evaluating the model
trained with other nine subsets. In each fold of cross-validation,
considering the high unbalance between positive and negative
samples (1:10), the negative samples were randomly divided
into 10 parts, each of which coupled with the set of positive
samples were used for training an RF-based m>C prediction
model. Therefore, ten RF-based m°C prediction models were
constructed in the training process. In the testing process, each
sample was scored using these ten RF-based m>C prediction
models. The corresponding ten prediction scores were averaged
as the final prediction score of the sample under analysis. Once
the testing process was completed, the prediction accuracy of
PEA-m5C (an ensemble of ten RF-based m>C prediction models)
was evaluated using the receiver operating characteristic (ROC)
analysis, which plots a curve of false positive rate (FPR) varying
at different true positive rate (TPR). The value under the ROC
curve (AUC) was used to quantitatively score the prediction
performance of PEA-m5C. AUC is ranged from 0 to 1, the higher
the better prediction performance. After 10 subsets have been
successively used as the testing set, the corresponding 10 AUC
values were averaged as the overall prediction performance of
PEA-m5C.

The PEA-m5C was optimized to maximize the AUC by
iteratively varying window size L from 5- to 43-nt and
feature number from 2 to 4xL+106. The feature subset was
selected according to the feature importance estimated using
the information gain approach implemented in R package
“FSelector” (Cheng et al., 2012). The detailed process of model
optimization is given in Figure 2. We initialize AUC matrix
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FIGURE 1 | The computational framework of PEA-m5C.

1. AUCMatrix<[][]

2. FMatrix<[][]

3. for L<5to43 do

4. for Lu<—1to L-2 do

5. La=<—L-Lu-1

6. AUCVector <[]

7. for F<—2to (4*L+106) do

8. AUC=-10-fold cross-validation

9. AUCVector[F]<—AUC

10. end for

11. maxAUC-<— maximum(AUC Vector)

12: AUCMatrix[Lu][Ld]<-maxAUC

13. /*Search AUCVector with maxAUC and return corresponding features*/

14. features <—Search(AUCVector)

155 FMatrix[Lu][Ld] <—features

16. end for

17. end for

18. /*Search AUCMatrix with maxAUC and return optimized Lu, La */

19.  Output optimized Lu, Ld

20. /*Search FMatrix by L« , Laand return optimized feature subset®/

21. Output optimized feature subset

FIGURE 2 | The pseudo-code for model optimization.
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(“AUCMatrix”) and feature matrix (“FMatrix”) as two empty
sets (Lines 1-2). Then for a given window size L (5-nt < L <
43-nt) (Line 3), we varied the upstream sequence length (L)
from 1-nt to (L-2)-nt and the number of feature subset from 2
to 4%xL+106 (Lines 4-7). Subsequently, for each feature subset,
we performed a 10-fold cross-validation experiment and stored
the corresponding AUC value into a vector (“AUCVector”)
(Lines 8-9). After all possible feature subsets have been examined
using 10-fold cross-validation experiments, the maximum AUC
in “AUCVector” will be stored in the “AUCMatrix” (Lines
11-12), and the corresponding feature subset with maximum
AUC will be stored in “FMatrix” (Lines 13-15). Finally, after
all possible window sizes have been performed, the optimized
L, and L; can be obtained by searching the maximum value
in “AUCMatrix” (Lines 18-19), and the optimized feature
subset can be obtained by searching “FMatrix” with L, and Ly
(Lines 20-21).

Model Prediction

PEA-m5C predicted all candidate m®C modifications in given
RNA sequences in FASTA format. For each cytosine site, PEA-
mb5C firstly extracted the flanking sequence with the optimized
window size. Then, three feature encoding schemes were
performed to transform the flanking sequence to a numeric
vector. Subsequently, the optimized feature subset was input
into the ten RF-based m5C prediction models. Finally, PEA-
m5C generated a prediction score to reflect the possibility of
this cytosine to be a real m°C modification. Of note, four
thresholds have been also included in the PEA-m5C, which
were automatically determined in the 10-fold cross-validation at
the specificity level of 99, 95, 90, and 85%, respectively. These
four thresholds corresponded to four different confidence modes
of PEA-m5C: VHmode (very high confidence mode), HMode
(high confidence mode), NMode (normal confidence mode) and
LMode (low confidence mode), respectively. Cytosine sites with
a prediction score higher than the threshold were predicted
as positive samples; otherwise, they were predicted as negative
samples.

Model Comparisons

The iRNAm5C-PseDNC is only available m°C predictor that
aims to accurately predict m®>C modifications in mammalian
genomes. It was constructed using the RF algorithm with
only PseDNC features, and was trained with mammalian
m°C modifications (window size: 41-nt) (Sun et al., 2016).
In order to fairly compare prediction performance between
iRNAmM5C-PseDNC and our proposed model PEA-m5C,
we also re-trained iRNAmM5C-PseDNC with positive and
negative samples of 41-nt in the DatasetCV, and this re-
trained predicted model was named as iRNAm5C-PseDNC*.
Prediction performance of iRNAm5C-PseDNC, iRNAm5C-
PseDNC* and PEA-m5C was estimated on DatasetHT,
DatasetIT1 and DatasetIT2 using six widely used measures:
sensitivity (Sn, also known as recall), specificity (Sp),
precision (Pr), accuracy (Acc), Fj-score (F;), and Matthews
correlation coefficient (MCC). These measures were defined as

follows:
TP
Sn = ——,
TP + FN
TN
Sp= ———,
TN + FP
TP
Pr= ——,
TP + FP
TP + TN
Acc = >
TP+ TN + FP + FN
F o— 2% Pr xSn B 2%TP
"7 "Pr+Sn _ 2+TP+ FP + FN’
TP*TN — FP+FN
MCC =

/(TP + FP) * (TP + FN) # (TN + FP) (TN + EN)_

where TP, TN, FP, and FN represent the number of true positives,
true negatives, false positives and false negatives, respectively.
F; is the harmonic mean of Pr and Sn. Compared with Sn,
Sp, Pr, and F;, Acc and MCC are two more information
measures which combine all of the predictions (TP, TN, FP,
and FN) into a single score. Acc, which ranges from 0
to 1, measures the proportion of correct predictions. MCC,
also known as the phi coefficient, measures the correlation
between the observations and predictions. It is generally
regarded as a balanced measure, which can be used even
if the two classes are of very different size. The value of
MCC ranges from —1 to 1, where 1 represents a perfect
prediction, 0 indicates no better than random prediction
and —1 means total disagreement between observations and
predictions.

Transcriptome-Wide m°C Annotation and
Analysis

Candidate m°C sites in the annotated Arabidopsis transcripts
were predicted using the PEA-m5C. The spatial distribution
of candidate m°C modifications was statistically analyzed in
three aspects: (i) feature enrichment (e.g., 5'-UTR, coding region
[CDS] and 3'-UTR) analysis of candidate m>C modifications
in coding RNAs; (ii) the most frequently methylated position
relative to the translational start site; (iii) functional enrichment
analysis of genes containing candidate m>C modifications.

The base preference around candidate m>C modification
sites was also explored, including: (i) the proportion of m>C
modifications in different sequence contexts: CG, CHG and
CHH (H: A, T or C); (ii) sequence motifs of candidate m>C
modifications.

RESULTS

Characterization of m°C Modifications

Using Sequence-Based Features

To investigate whether m°C modifications can be identified
using sequence-based features, we first examined the positional
frequencies of four bases in positive and negative samples in
the DatasetCV (Figures 3A,B). We observed that the positional
base frequency appears to be stable in negative samples. In
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contrast, the positional base frequency was biased to guanine
(G) in the region near m°C sites in positive samples. We
then detected position-specific base usages by using rank
sum test. Setting significant level (p-value) to be 1.0E-10, we
found that 15 position-specific base usages are significantly
different between positive and non-m°>C modifications. They
are —9G,—7T,—6A,—3G,—2T,-2G,—2C,—1T,—1C, 1G, 1C, 2T,
2G, 6G. The difference can be visualized by comparing the
frequencies of these position-specific bases in m*C and non- m>C
modifications (Figure 3C). Furthermore, through two sample
logo analysis using R package “DiffLogo” (Nettling et al., 2015),
we discovered the similar trend of some specific nucleotide
usage preferences around m>C modifications (Figure 3D). These
results indicate that base frequency differences exist between m>C
and non- m°>C modifications.

We then examined sequence-based features generated from
k-mer and PseDNC encoding schemes. Figure 4A displays
the mean values of these features for positive and negative
samples. When the window size is 11-nt (L, = L; = 5),
we detected 70 k-mer-based features and 19 PseDNC-based
features significantly different between positive and negative
samples (two-sample -test; p < 1.0E-4). The top-five ranked
features are the frequency of T, G, GG and PseDNC-11,
PseDNC-15 (Figure 4B). When the window size was extended
from 11-nt to 41-nt (L, = L; = 20), we also detected 32
k-mer-based features and 12 PseDNC-based features at the
significance level of 1.0E-4. The top-five ranked features are

the frequency of G, GG and GGC, PseDNC-11 and PseDNC-15
(Figure 4B).

Taken together, these results indicate that the three encoding
schemes, binary, k-mer and PseDNC, can generate discriminative
features for m>C prediction. However, the importance of
different features is affected by the window size used.

A Machine Learning-Based m°C Predictor
With Optimized Window Size and Features

To obtain the optimized window size and feature subset, we
iteratively performed ten-fold cross-validation experiments on
the DatasetCV by varying window size L from 5-nt to 43-nt
and the feature number F from 2 to 106+4*L (Figure 5A). For
a given window size of L (e.g., upstream region: L, = 10 and
downstream region: L; = 5) and feature number of F (e.g.,
F = 50), we performed a 10-fold cross-validation experiment to
calculate an AUC value for evaluating the prediction performance
of PEA-m5C. Then, at the given window size L, the best AUC
value achieved by PEA-m5C can be found according to the curve
depicted in Figure 5B, where x axis represents the number of
selected features and y axis represents the AUC yielded by PEA-
m5C. After examining all possible combinations of window sizes
and feature numbers, we observed that PEA-m5C achieved the
highest AUC value of 0.939 (Figure 5A), when the window size
was set as 11-nt (L, = Ly = 5) and 50 top ranked features were
used (Figure 5C,Table S2).
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Prediction Evaluation and Comparison iRNAmS5C-PseDNC using positive and negative samples from the
Using Hold-Out and Independent Testing DatasetCV and evaluated its performance using the DatasetHT.
Sets Compared with iRNAmS5C-PseDNC, iRNAm5C-PseDNC*

yielded higher prediction accuracy at the level of Sn, Sp, Pr,
Acc, MCC, and F;. However, PEA-m5C still achieved higher
prediction accuracy than iRNAm5C-PseDNC and iRNAm5C-
PseDNCs (Table 1). The prediction performance of PEA-m5C
was also better than iRNAm5C-PseDNC and iRNAm5C-
PseDNC* on DatasetIT1 and Dataset2, which consist of
samples from Arabidopsis silique and shoot tissues, respectively
(Table S3).

Taken together, these results indicate that the construction of
Arabidopsis thaliana-specific predictor is necessary and crucial.
In addition, PEA-m5C is a useful tool for the prediction of m>C
sites in Arabidopsis transcripts.

After training PEA-m5C using the DatasetCV with the optimized
window size and feature subset, we next evaluated the
performance of PEA-m5C on a hold-out test set (DatasetHT).
As shown in Figure 6A, the prediction score of positive samples
(mean = standard deviation [sd]: 0.775 £ 0.223) was significantly
higher than that of negative samples (mean = sd: 0.194% 0.225).
This result indicates that PEA-m5C could provide a competitive
performance in discriminating positive and negative samples.
Indeed, PEA-m5C gave an area under ROC (AUC) and an
area under the precision-recall curve (auPRC) of 0.939 and
0.945, respectively (Figures 6B,C). To assess the performance
more comprehensively, six measures (Sn, Sp, Pr, Acc, MCC,
and F;) were examined at four thresholds, corresponding . . .
to the specificity level of 99% (very high confidence mode;  Transcriptome-Wide Annotation and
VHmode), 95% (high confidence mode; HMode), 90% (normal ~ Analysis of Candidate m°C Modifications
confidence mode; NMode) and 85% (Low confidence mode;  The encouraging performance of PEA-m5C in the cross-
LMode) in the 10-fold cross-validation experiment, respectively  validation and validation testing experiments provide us an
(Table 1). In line with the intuitive observations of ROC curve  opportunity to accurately predict m>C sites in the annotated
(Figure 6B) and precision-recall curve (Figure 6C), PEA-m5C  Arabidopsis transcripts. At the threshold of 0.891 (VHMode),
performed markedly better than random selection (AUC = 0.5, PEA-m5C predicted 303,421 candidate m°C modifications
auPRC = 0.5, and MCC = 0) in predicting m>C modifications at  (Table 2), covering 4.56% cytosines (303,421/6,650,570) in
four different specificity levels (Table 1). all annotated transcripts in Araport 11 database (https://

Currently, iRNAm5C-PseDNC is the only software available  www.araport.org/data/araportll). During the writing of our
for m>C prediction; however, it was built based on mammalian manuscript, Cui and colleagues identified 4,439 m>C peaks
m’C modifications. This provides us an opportunity to evaluate  in 3,534 expressed genes (TableS4) in young seedlings
whether iRNAm5C-PseDNC could retain prediction accuracy on  of Arabidopsis (Cui et al, 2017), by applying m>C RNA
Arabidopsis m>C modifications. We observed that iRNAmM5C-  immunoprecipitation followed by a deep-sequencing approach.
PseDNC yielded a high specificity of 0.980, but an extremely =~ We validated the m°C predictions using these 4,439 m>C peaks.
low sensitivity of 0.010. The main reason is that there are ~ Among the 3,534 expressed genes, PEA-m5C identified 5,463
significant differences between mammalian and Arabidopsis  candidate m®>C modifications, covering 2,724 of 4,439 reported
m>C modifications (Figure $2). To examine the effectiveness  peak regions. We note that the proportion of covered m>C peaks
of ML algorithms in iRNAm5C-PseDNC, we generated a new  increased from 61.4% (2,724/4,439) to 89.4% (3,968/4,439), when
prediction model (named as iRNAm5C-PseDNC*) by re-training  the HMode was used.
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As is known to us all, cytosines in DNA sequences can be
methylated in three sequence context, namely CG, CHG, and
CHH (H = A, C, or T) (Smith and Meissner, 2013). In this study,
we explored the levels of cytosine methylation in RNA sequences.
We observed that 24.7, 27.8, and 47.5% of the candidate m>C
modifications are methylated in the CG, CHG, and CHH
sequence context, respectively. These proportions are markedly
different from those of cytosines in background sequences
(CG: 15.1%, CHG: 17.9%, CHH: 67.0%) (Figure 7A). Statistical
analysis of base preference showed that there are very strong
“G” signal around candidate m>C modifications (Figure 7B).
These results indicate that candidate m>C modifications
predicted by PEA-m5C may have potential biological
functions.

Toward a better understanding of these candidate m°>C
modifications, we further analyzed the enrichment of m>C
within three different regions of mRNAs: 5-UTR, CDS and
3’-UTR. It can be seen from Figure7C that the majority

of m°>C modifications are located in CDS regions. Recent
studies have indicated that the m°C modification prefers
to occur at the downstream of translational start sites in
mammal mRNAs (Amort et al.,, 2017; Yang et al., 2017). We
calculated the distance between candidate m°>C modifications
and translational start sites, and found that the most frequently
m°C modification position is the 4nt downstream of the
translational start site (AUG*C; methylated cytosines are
in bold and underlined) (Figure7D). In order to further
investigate the potential function of those 1,063 genes with m>C
modifications located at 4-nt downstream of the translational
start site, we performed a GO (gene ontology) enrichment
analysis using agriGO 2.0 (Tian et al, 2017) and found
that in the BP (Biological Progress) sub-category, 166 genes
(Table 3) are enriched in the term “response to stimulus”
with FDR of 2.40E-4; For the MF (Molecular Function)
sub-category, 350 genes are significantly enriched in “catalytic
activity” with FDR of 9.80E-07 (Table 3). We also performed
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TABLE 1 | Prediction performance of m°C predictors on DatasetHT.

m®C predictor Mode Threshold Sp Pr Acc MCC F4
PEA-m5C VHmode 0.891 0.330 1.000 1.000 0.665 0.445 0.496
HMode 0.765 0.720 0.950 0.935 0.835 0.688 0.814
NMode 0.622 0.860 0.900 0.896 0.880 0.761 0.878
LMode 0.484 0.900 0.860 0.865 0.880 0.761 0.882
iIRNAM5C-PseDNC (web server) - - 0.010 0.980 0.333 0.495 —0.041 0.019
iIRNAM5C-PseDNC (Method)* - 0.500 0.610 0.720 0.685 0.665 0.332 0.646

*An m5C prediction model generated by re-training IRNAmM5C-PseDNC using positive and negative samples from the DatasetCV.

TABLE 2 | Candidate m®C modifications in different types of RNAs. Num:
number, Prop: proportion, trans: transcripts.

RNA Num of  Num of Num (Prop) of  Num (Prop) of
trans  cytosines cytosines are trans containing
methylated mSc
Long noncoding 2,455 161,608 1,480 (0.92%) 967(39.39%)
RNA
miRNA 387 1,082 15 (1.29%) 12(3.10%)
Primary miRNA 325 9,717 100 (1.03%) 74(22.77%)
transcript
mMRNA 48,353 16,727,847 225,348 (1.35%) 44,350(91.72%)
rRNA 15 4,041 147 (3.64%) 12(80.00%)
snoRNA 287 5,049 70 (1.39%) 55(19.16%)
snRNA 82 2,906 62 (2.13%) 35(42.68%)
tRNA 689 10,227 272 (2.66%) 232(33.67%)

pathway enrichment analysis on these 1063 genes using the
hypergeometric distribution test. Pathway information was
obtained from KEGG (http://www.genome.jp/kegg) and AraCyc
(http://www.plantcyc.org) databases. At the level of p < 1.0E-2,
we identified four significantly enriched pathways, including
L-lysine biosysthesis VI pathway, glutathione metabolism,
N-Glycan biosynthesis, and phosphatidylinositol signaling
system (Table S5).

Implementation of PEA-m5C

To facilitate the practicability, we implemented PEA-m5C into
an R package named “PEA-m5C”. We also provided a cross-
platform, user-friendly and interactive interface for PEA-m5C
with JAVA programming language (Figure 8). This allows the
user to easily implement PEA-m5C without the requirement of
any programming skills or knowledge. To expand the application
of PEA-m5C to other species, users can also retrain prediction
models through the pre-specified dataset using the “Self-Defined
Mode” option in PEA-m5C, with the input of positive and
negative samples in FASTA format. PEA-m5C is freely available
to academic users at: https://github.com/cma2015/PEA-m5C.

DISCUSSION

In this study, we developed PEA-m5C, a computationally
framework for accurate identification of m>C modifications
in Arabidopsis. PEA-m5C predictor was constructed using RF
algorithm with optimized window size and sequence-based
features, achieving a considerable promising performance no
matter from 10-fold cross-validation experiment or hold-out test
experiment. The PEA-m5C is superior to the newly developed
and only available m>C predictor iRNAm5C-PseDNC in several
aspects.

First, besides the PseDNC encoding scheme used in
iRNAm5C-PseDNC, PEA-m5C  additionally  integrates
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TABLE 3 | Top five significant GO terms in the sub-category of biological progress another two encoding schemes (binary and k-mer) to

(BF), molecular function (MF), and cellular component (CC). make more use of sequence-based features. Both 10-fold
GO Term Enriched gene  FDR  Category cross-validation and independent testing experiments
number have demonstrated that higher prediction accuracy can
be achieved by PEA-m5C when more feature encoding
Lipid localization 10 2.60E-05 BP schemes were used (Figure S3; Table S6). For instance, in
Response to stimulus 166 0.00024 BP the 10-fold cross-validation, PEA-m5C vyielded an AUC of
Macromolecule localization 34 0.00032 BP 0.904, 0914 and 0.939 when PseDNC, PseDNC + k-mer,
Localization 91 0.00032 BP PseDNC + k-mer + binary encoding schemes were used,
Toxin metabolic process 11 0.00032 BP respectively.
Transporter activity 91 3.70E-09 MF Second, PEA-m5C uses a hybrid optimization strategy
Transmembrane transporter activity 69 9.80E-07 MF to produce better prediction accuracy (TableS6), while
Catalytic activity 350 9.80E-07 MF iRNAmM5C-PseDNC didn’t perform the model optimization
Substrate-specific transporter activity 63 6.90E-06 MF process. This is understandable as the model optimization is
Substrate-specific transmembrane 56 1.10E-05 MF a rather timing-consuming process (Figure 2). However, the
transporter activity results shown in Figure 5 illustrated the importance of model
Cytoplasm 299 2.60E-14 cC optimization in developing accurate m°>C predictors. We also
Cell part 548 1.00E-13 cc would like to note that the process of model optimization
Cell 548 1.00E-13 CC requires to be finely tuned, such as the choice of appropriate
Cytoplasmic part 276 1.40E-13 cc feature selection approaches. To select informative features
Membrane 200 1.40E-13 cc for m°C prediction, we preferred to use the information
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FIGURE 8 | The Java interface implementation of PEA-m5C.

gain approach rather than statistical analysis approaches
(e.g., chi-square test for binary features, student’s ¢-test
for k-mer- and PseDNC-based features). While testing
on the DatasetHT, PEA-m5C using the information gain
approach yielded a slightly higher maximum MCC (0.790)
than that using the chi-square test and the student’s t-test
(0.770).

Finally, PEA-m5C has been implemented into a user-friendly
interface with JAVA programming language and an R package to
maximize its practicality. It also includes a self-training module
that provides an option to automatically build m>C predictors
for specific species, tissues, or conditions. This is very important
as m°C modifications exhibit different sequence patterns in
different issues (Figure S4).

In the future, we will endeavor to incorporate more
features (e.g., structure-based features) to further improve
the performance of PEA-m5C. If possible, specie-specific
or tissue-specific predictors will be developed to facilitate
the functional investigation of m°C modifications in
plants.
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Supplementary Data 1 | The description of PseDNC encoding.

Figure S1 | Location distribution of positive, negative and background samples
along the 5’-UTR, CDS and 3’-UTR, normalized for transcript length (relative
distance).

Figure S2 | Two sample logos of Arabidopsis and mammalian m®C modifications.
It shows nucleotides which are enriched or depleted in the surrounding region of
m5C modifications.

Figure S3 | The ROC curve of 10-fold cross-validation illustrating the performance
of PEA-m5C with different feature encoding schemes.

Figure S4 | Different sequence patterns of m5C modifications in DatasetHT,
DatasetIT1, and DatasetIT2. (A) Frequencies of 41 * 4 position-specific bases in
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DatasetHT (Root tissue) and DatasetlT1 (Silique tissue). (B) Two sample logos
DatasetHT (Root tissue) and DatasetIT1 (Silique tissue) m®C modifications.

(C) Frequencies of 41 * 4 position-specific bases in DatasetHT (Root tissue) and
DatasetlT2 (Shoot tissue). (D) Two sample logos DatasetHT (Root tissue) and
DatasetIT2 (Shoot tissue) m®C modifications.

Table S1 | Four benchmark datasets constructed for the prediction of m°C
modifications in this study.

Table S2 | The feature importance measured using the information gain approach
at the window size of 11-nt (Ly =Ly = 5).
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