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The emergence of epitranscriptome opened a new chapter in gene regulation.

5-methylcytosine (m5C), as an important post-transcriptional modification, has been

identified to be involved in a variety of biological processes such as subcellular

localization and translational fidelity. Though high-throughput experimental technologies

have been developed and applied to profile m5C modifications under certain conditions,

transcriptome-wide studies of m5C modifications are still hindered by the dynamic

and reversible nature of m5C and the lack of computational prediction methods. In

this study, we introduced PEA-m5C, a machine learning-based m5C predictor trained

with features extracted from the flanking sequence of m5C modifications. PEA-m5C

yielded an average AUC (area under the receiver operating characteristic) of 0.939 in

10-fold cross-validation experiments based on known Arabidopsis m5C modifications.

A rigorous independent testing showed that PEA-m5C (Accuracy [Acc] = 0.835,

Matthews correlation coefficient [MCC] = 0.688) is remarkably superior to the recently

developed m5C predictor iRNAm5C-PseDNC (Acc = 0.665, MCC = 0.332). PEA-m5C

has been applied to predict candidate m5C modifications in annotated Arabidopsis

transcripts. Further analysis of these m5C candidates showed that 4nt downstream of

the translational start site is the most frequently methylated position. PEA-m5C is freely

available to academic users at: https://github.com/cma2015/PEA-m5C.

Keywords: AUC, Epitranscriptome, machine learning, RNA modification, RNA 5-methylcytosine

INTRODUCTION

The epitranscriptome, also known as chemical modifications of RNA (CMRs), is a newly discovered
layer of gene expression (Meyer and Jaffrey, 2014). With advances in mass spectrometry and
high-throughput sequencing technologies, the field of epitranscriptome is rapidly expanding and
attracting a comparable degree of research interests to DNA and histone modifications in the
field of epigenetics (Helm and Motorin, 2017). Among more than 150 types of CMRs identified,
most of them have been found in transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs) (Hussain
et al., 2013), but some can occur in mRNAs and noncoding RNAs (Machnicka et al., 2013; Pan,
2013; Carlile et al., 2014; Dominissini et al., 2016; David et al., 2017). A growing line of evidences
indicated that CMRs located in both coding and noncoding regions can play essential roles in a
variety of biological processes. For instance, N6-methyladenosine (m6A) sites in 5′-untranslated
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region (UTR) can promote cap-independent translation under
heat stress (Meyer et al., 2015; Zhou et al., 2015); while m6A sites
in coding regions can affect translation dynamics by inducing
steric constraints and destabilizing pairing between codons and
tRNA anticodons (Choi et al., 2016; Zhao et al., 2017). Thus, the
transcriptome-wide annotation of RNAmodifications is essential
for fully understanding the biological functions of CMRs.

Compared with those well characterized modifications such
as m6A and N1-methyladenosine (m1A), the transcriptome-
wide annotation of 5-methylcytosine (m5C) modifications
is more challenging. First, bisulfite sequencing technologies
are difficult to implement for profiling m5C modifications
because of the instability of mRNA molecules treated with
bisulfite (Amort et al., 2013; Li et al., 2016). In addition,
other existing high-throughput sequencing technologies,
such as m5C-RIP (Edelheit et al., 2013), can localize m5C
residues to transcript regions of 100–200 nucleotide (nt)
long, but fail to accurately identify m5C modifications at
single-nucleotide solution. Second, because of the reversible
and dynamic nature of m5C (Wang and He, 2014), the
high-throughput sequencing technologies can only capture a
snapshot of m5C modifications under certain experimental
conditions, and cover just a small fraction of the whole
transcriptome of a given sample (Zhou et al., 2016), resulting
in the generation of significant numbers of false negatives
(non-detected true m5C modifications). Third, the base
preferences around the m5C sites are not strong enough,
increasing the difficulties in computational predictions
with traditional statistical approaches. Machine learning
(ML) is a branch of artificial intelligence technology that
has been widely used in engineering, computer science,
informatics and biology (Ma et al., 2014a, 2017; Cui et al.,
2015; Libbrecht and Noble, 2015; Zhai et al., 2016). The biggest
advantage of ML systems is that they can automatically learn
interesting patterns from existing datasets and bring about self-
improvement of system performance for accurately predicting
novel knowledge from a new data set (Ma et al., 2014a,b).
Therefore, computational methods coupled with machine
learning technologies may provide an option to accurately
annotate RNAmodifications like m5C in the transcriptome-wide
manner.

Until now, iRNAm5C-PseDNC is the exclusivem5C predictor,
which was built using random forest (RF) algorithm based
on sequence-based features, and has been reported to have a
good predictive performance for mammalian m5C prediction
(Qiu et al., 2017). However, because of the lineage-specific
sequence and structural properties differences between plant
and mammalian species, tools developed for mammal species
can’t always retain their original performance when applied to
other organisms (Leclercq et al., 2013; Zhai et al., 2017). This
particular issue underscores the need for accurate transcriptome-
wide m5C prediction tools in plants, which may lay a foundation
for elucidating the mechanisms of formation and the cellular
functions of m5C modifications.

In this study, we developed PEA-m5C, an accurate
transcriptome-wide m5C predictor under a ML framework
with an ensemble of 10 RF-based prediction models. PEA-m5C

was trained with features extracted from the flanking sequence
of m5C modifications, and showed promising performance
when applied to predict m5C modifications in Arabidopsis
thaliana. We further applied PEA-m5C to predict candidate
m5C modifications in annotated Arabidopsis transcripts, and
found that candidate m5C modifications are enriched in the
coding region of mRNAs. In addition, 4-nt downstream of the
translational start site is the most frequently methylated position.
All candidate m5C modifications have been deposited in a public
database named Ara-m5C for follow-up functional studies.
In order to facilitate the application of PEA-m5C, we have
implemented the proposed model into a cross-platform, user-
friendly and interactive interface with R and JAVA programming
languages.

MATERIALS AND METHODS

Dataset Generation
In this study, we constructed four m5C datasets: DatasetCV
(cross-validation dataset), DatasetHT (hold-out test dataset),
DatasetIT1 (independent test dataset for samples from the
Arabidopsis silique tissue) and DatasetIT2 (independent test
dataset for samples from the Arabidopsis shoot tissue).

DatasetCV and DatasetHT were constructed based on
m5C modifications in transcripts expressed in the Arabidopsis
root tissue at single-nucleotide resolution using RNA bisulfite
sequencing technology (David et al., 2017). During bisulfite
conversion, unmethylated cytosines were converted into uracils,
while methylated cytosines were not converted. Bisulfite-treated
RNA samples were sequenced to generated 100-nt paired-
end reads using the Illumina HiSeq 2500. Low-quality reads
were processed using Trimmomatic (Bolger et al., 2014),
and the left clean reads were globally mapped to in silico
bisulfite-converted Arabidopsis reference genome sequences
using the RNA mode of B-Solana (Kreck et al., 2012). For
each cytosine site in the Arabidopsis reference genome, the
methylation level was calculated using a proportion statistic:
P = (C+9)/(T+C), where C and T represent the number
of cytosines and thymines in aligned reads at the cytosine
site under analysis, respectively. 9 specifies the added pseudo
counts (1/8 counts). The false discovery rate (FDR) was
calculated using the R package qvalue (Storey, 2002). Cytosines
were regarded as positive samples (m5C modifications) if they
satisfied the following criteria: methylation level ≥1% and
FDR ≤ 0.3. After the removal of sequence redundancy, we
finally obtained 1,296 m5C modifications in 885 transcripts
(Table S1). In these 885 transcripts, cytosines were regarded
as negative samples (non-m5C modifications) if they were not
annotated as m5C modifications. In order to avoid over-fitting
and GC bias in training process, we limited the number of
negative samples to be 10 times of positive samples. Thus,
for each positive sample, 10 samples were selected in the
200-nt region around the positive sample, among which GC
content difference is not more than 5%. This allows a similar
distribution of positive and GC-matched negative samples,
which is markedly different from the background distribution
of all cytosines in these 885 transcripts (Figure S1). Note
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that some of the negative samples may in fact be true
m5C modifications not yet discovered. We randomly divided
these 1,296 positive samples and 12,960 negative samples
into two parts for constructing DatasetCV and DatasetHT,
respectively. The DatasetCV comprises 1,196 positive samples
and 11,960 negative samples, while the DatasetHT has a
balanced number (100) of positive and negative samples
(Table S1).

Using the same criteriamentioned above, another two datasets
(DatasetIT1: 79 positive and negative samples; DatasetIT2:
73 positive and negative samples) were also constructed for
Arabidopsis silique and shoot tissues, respectively (Table S1). Of
note, positive and negative samples in DatasetIT1 andDatasetIT2
were not overlapped with those in DatasetCV and DatasetHT.

Each sample in these four datasets was represented by
a sequence window of 43 nucleotides centered around the
respective cytosine site. For samples near the borders of the
available RNA sequence, the positions missing from the 43-
nt window were filled with “N,” the symbol for unknown.
The Arabidopsis reference genome sequences (TAIR10) and
annotated transcripts used in this study were downloaded
from the Araport 11 database (https://www.araport.org/data/
araport11).

Feature Encoding
In order to be recognized byML-based systems, each sample of L-
nt window size, was represented as a numeric vector (length: 4∗L
+ 106) using the binary, k-mer and PseDNC encoding schemes.
The details of these three encoding schemes are described in the
following.

Binary Encoding
This encoding strategy generates a vector of 4∗L features by
characterizing “A,” “C,”, “G,” “U,” and “N” with (1, 0, 0, 0), (0,
1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), and (0, 0, 0, 0) for each sample,
respectively.

K-mer Encoding
In this scheme, the composition of short sequence with
different lengths was considered to explore its potential effect
on the identification of m5C. In order to avoid the curse of
dimensionality, we set k = 1, 2, and 3 to generate 84 features for
calculating the frequency of mononucleotide occurrence (k = 1;
four features), dinucleotide occurrence (k = 2; 16 features) and
trinucleotide occurrence (k= 3; 64 features).

PseDNC Encoding
The pseudo dinucleotide composition (PseDNC) is a widely used
encoding strategy that considers sequential information as well as
physicochemical properties of dinucleotides in the RNA sequence
(Chen et al., 2015, 2017). For each sample, it generates 16+λ

numeric features, the first 16 of which are features extracted from
adjacent dinucleotide pairs, and the other λ are features extracted
from distant dinucleotide pairs (λ denotes the maximal distance
between two dinucleotides). The detailed definition of PseDNC is
presented in Supplementary Data 1.

Development of ML-Based m5C Predictor
Figure 1 illustrates the workflow of PEA-m5C, which consists
of three phases, namely, (A) model construction, (B) model
optimization, and (C) model prediction. Model construction and
optimization were performed on the DatasetCV.

Model Construction
To construct an m5C prediction model, PEA-m5C required
an input of a set of positive and negative samples. These
samples were transformed into a feature matrix using three
different encoding schemes (binary, k-mer, and PseDNC). The
feature matrix was input into the RF algorithm to construct
an m5C prediction model, which consisted of 100 classification
trees. Each of the classification trees was built using a set of
bootstrapped samples and features. The output of the RF-based
m5C prediction model was determined by a majority vote of the
classification trees. The RF algorithm was implemented using the
R package “Rweka” (Hornik et al., 2009), which provides an R
environment to invoke the ML package “weka” (v3.9.1; https://
www.cs.waikato.ac.nz/ml/weka).

Model Optimization
Ten-fold cross-validation experiments were performed to
optimize m5C prediction models in PEA-m5C by iteratively
varying window size and feature number. Cross-validation is
a standard method for estimating the generalization accuracy
of ML systems. In a ten-fold cross-validation, the DatasetCV
was randomly divided into 10 equal subsets and each subset
was iteratively selected as a testing set for evaluating the model
trained with other nine subsets. In each fold of cross-validation,
considering the high unbalance between positive and negative
samples (1:10), the negative samples were randomly divided
into 10 parts, each of which coupled with the set of positive
samples were used for training an RF-based m5C prediction
model. Therefore, ten RF-based m5C prediction models were
constructed in the training process. In the testing process, each
sample was scored using these ten RF-based m5C prediction
models. The corresponding ten prediction scores were averaged
as the final prediction score of the sample under analysis. Once
the testing process was completed, the prediction accuracy of
PEA-m5C (an ensemble of ten RF-based m5C prediction models)
was evaluated using the receiver operating characteristic (ROC)
analysis, which plots a curve of false positive rate (FPR) varying
at different true positive rate (TPR). The value under the ROC
curve (AUC) was used to quantitatively score the prediction
performance of PEA-m5C. AUC is ranged from 0 to 1, the higher
the better prediction performance. After 10 subsets have been
successively used as the testing set, the corresponding 10 AUC
values were averaged as the overall prediction performance of
PEA-m5C.

The PEA-m5C was optimized to maximize the AUC by
iteratively varying window size L from 5- to 43-nt and
feature number from 2 to 4∗L+106. The feature subset was
selected according to the feature importance estimated using
the information gain approach implemented in R package
“FSelector” (Cheng et al., 2012). The detailed process of model
optimization is given in Figure 2. We initialize AUC matrix
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FIGURE 1 | The computational framework of PEA-m5C.

FIGURE 2 | The pseudo-code for model optimization.

Frontiers in Plant Science | www.frontiersin.org 4 April 2018 | Volume 9 | Article 519

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Song et al. Transcriptome-Wide m5C Modification Annotation

(“AUCMatrix”) and feature matrix (“FMatrix”) as two empty
sets (Lines 1-2). Then for a given window size L (5-nt ≤ L ≤

43-nt) (Line 3), we varied the upstream sequence length (Lu)
from 1-nt to (L-2)-nt and the number of feature subset from 2
to 4∗L+106 (Lines 4-7). Subsequently, for each feature subset,
we performed a 10-fold cross-validation experiment and stored
the corresponding AUC value into a vector (“AUCVector”)
(Lines 8-9). After all possible feature subsets have been examined
using 10-fold cross-validation experiments, the maximum AUC
in “AUCVector” will be stored in the “AUCMatrix” (Lines
11-12), and the corresponding feature subset with maximum
AUC will be stored in “FMatrix” (Lines 13-15). Finally, after
all possible window sizes have been performed, the optimized
Lu and Ld can be obtained by searching the maximum value
in “AUCMatrix” (Lines 18-19), and the optimized feature
subset can be obtained by searching “FMatrix” with Lu and Ld
(Lines 20-21).

Model Prediction
PEA-m5C predicted all candidate m5C modifications in given
RNA sequences in FASTA format. For each cytosine site, PEA-
m5C firstly extracted the flanking sequence with the optimized
window size. Then, three feature encoding schemes were
performed to transform the flanking sequence to a numeric
vector. Subsequently, the optimized feature subset was input
into the ten RF-based m5C prediction models. Finally, PEA-
m5C generated a prediction score to reflect the possibility of
this cytosine to be a real m5C modification. Of note, four
thresholds have been also included in the PEA-m5C, which
were automatically determined in the 10-fold cross-validation at
the specificity level of 99, 95, 90, and 85%, respectively. These
four thresholds corresponded to four different confidence modes
of PEA-m5C: VHmode (very high confidence mode), HMode
(high confidence mode), NMode (normal confidence mode) and
LMode (low confidence mode), respectively. Cytosine sites with
a prediction score higher than the threshold were predicted
as positive samples; otherwise, they were predicted as negative
samples.

Model Comparisons
The iRNAm5C-PseDNC is only available m5C predictor that
aims to accurately predict m5C modifications in mammalian
genomes. It was constructed using the RF algorithm with
only PseDNC features, and was trained with mammalian
m5C modifications (window size: 41-nt) (Sun et al., 2016).
In order to fairly compare prediction performance between
iRNAm5C-PseDNC and our proposed model PEA-m5C,
we also re-trained iRNAm5C-PseDNC with positive and
negative samples of 41-nt in the DatasetCV, and this re-
trained predicted model was named as iRNAm5C-PseDNC∗.
Prediction performance of iRNAm5C-PseDNC, iRNAm5C-
PseDNC∗ and PEA-m5C was estimated on DatasetHT,
DatasetIT1 and DatasetIT2 using six widely used measures:
sensitivity (Sn, also known as recall), specificity (Sp),
precision (Pr), accuracy (Acc), F1-score (F1), and Matthews
correlation coefficient (MCC). These measures were defined as

follows:

Sn =
TP

TP+ FN
,

Sp =
TN

TN+ FP
,

Pr =
TP

TP+ FP
,

Acc =
TP+ TN

TP+ TN+ FP+ FN
,

F1 =
2∗Pr×Sn

Pr+ Sn
=

2∗TP

2∗TP+ FP+ FN
,

MCC =
TP∗TN− FP∗FN

√

(TP+ FP) ∗ (TP+ FN) ∗ (TN+ FP) ∗(TN+ FN)
,

where TP, TN, FP, and FN represent the number of true positives,
true negatives, false positives and false negatives, respectively.
F1 is the harmonic mean of Pr and Sn. Compared with Sn,
Sp, Pr, and F1, Acc and MCC are two more information
measures which combine all of the predictions (TP, TN, FP,
and FN) into a single score. Acc, which ranges from 0
to 1, measures the proportion of correct predictions. MCC,
also known as the phi coefficient, measures the correlation
between the observations and predictions. It is generally
regarded as a balanced measure, which can be used even
if the two classes are of very different size. The value of
MCC ranges from −1 to 1, where 1 represents a perfect
prediction, 0 indicates no better than random prediction
and −1 means total disagreement between observations and
predictions.

Transcriptome-Wide m5C Annotation and
Analysis
Candidate m5C sites in the annotated Arabidopsis transcripts
were predicted using the PEA-m5C. The spatial distribution
of candidate m5C modifications was statistically analyzed in
three aspects: (i) feature enrichment (e.g., 5′-UTR, coding region
[CDS] and 3′-UTR) analysis of candidate m5C modifications
in coding RNAs; (ii) the most frequently methylated position
relative to the translational start site; (iii) functional enrichment
analysis of genes containing candidate m5C modifications.

The base preference around candidate m5C modification
sites was also explored, including: (i) the proportion of m5C
modifications in different sequence contexts: CG, CHG and
CHH (H: A, T or C); (ii) sequence motifs of candidate m5C
modifications.

RESULTS

Characterization of m5C Modifications
Using Sequence-Based Features
To investigate whether m5C modifications can be identified
using sequence-based features, we first examined the positional
frequencies of four bases in positive and negative samples in
the DatasetCV (Figures 3A,B). We observed that the positional
base frequency appears to be stable in negative samples. In

Frontiers in Plant Science | www.frontiersin.org 5 April 2018 | Volume 9 | Article 519

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Song et al. Transcriptome-Wide m5C Modification Annotation

FIGURE 3 | Position-specific base usage in positive and negative samples. The region around (−20, 20) around the cytosine sites is used to perform position-specific

base usage analysis, where the cytosines are defined as 0. (A) Frequencies of 41 × 4 position-specific bases in positive samples. (B) Frequencies of 41 × 4

position-specific bases in negative samples. (C) Two sample logo of the differences between m5C and non-m5C modifications. It shows nucleotides which are

enriched or depleted in the surrounding regions of m5C modifications. (D) With a significance level of 1.0E-10, the usage of 15 position-specific bases is significantly

different between m5C and non-m5C modifications.

contrast, the positional base frequency was biased to guanine
(G) in the region near m5C sites in positive samples. We
then detected position-specific base usages by using rank
sum test. Setting significant level (p-value) to be 1.0E-10, we
found that 15 position-specific base usages are significantly
different between positive and non-m5C modifications. They
are −9G,−7T,−6A,−3G,−2T,−2G,−2C,−1T,−1C, 1G, 1C, 2T,
2G, 6G. The difference can be visualized by comparing the
frequencies of these position-specific bases inm5C and non-m5C
modifications (Figure 3C). Furthermore, through two sample
logo analysis using R package “DiffLogo” (Nettling et al., 2015),
we discovered the similar trend of some specific nucleotide
usage preferences around m5Cmodifications (Figure 3D). These
results indicate that base frequency differences exist betweenm5C
and non- m5C modifications.

We then examined sequence-based features generated from
k-mer and PseDNC encoding schemes. Figure 4A displays
the mean values of these features for positive and negative
samples. When the window size is 11-nt (Lu = Ld = 5),
we detected 70 k-mer-based features and 19 PseDNC-based
features significantly different between positive and negative
samples (two-sample t-test; p ≤ 1.0E-4). The top-five ranked
features are the frequency of T, G, GG and PseDNC-11,
PseDNC-15 (Figure 4B). When the window size was extended
from 11-nt to 41-nt (Lu = Ld = 20), we also detected 32
k-mer-based features and 12 PseDNC-based features at the
significance level of 1.0E-4. The top-five ranked features are

the frequency of G, GG and GGC, PseDNC-11 and PseDNC-15
(Figure 4B).

Taken together, these results indicate that the three encoding
schemes, binary, k-mer and PseDNC, can generate discriminative
features for m5C prediction. However, the importance of
different features is affected by the window size used.

A Machine Learning-Based m5C Predictor
With Optimized Window Size and Features
To obtain the optimized window size and feature subset, we
iteratively performed ten-fold cross-validation experiments on
the DatasetCV by varying window size L from 5-nt to 43-nt
and the feature number F from 2 to 106+4∗L (Figure 5A). For
a given window size of L (e.g., upstream region: Lu = 10 and
downstream region: Ld = 5) and feature number of F (e.g.,
F = 50), we performed a 10-fold cross-validation experiment to
calculate anAUC value for evaluating the prediction performance
of PEA-m5C. Then, at the given window size L, the best AUC
value achieved by PEA-m5C can be found according to the curve
depicted in Figure 5B, where x axis represents the number of
selected features and y axis represents the AUC yielded by PEA-
m5C. After examining all possible combinations of window sizes
and feature numbers, we observed that PEA-m5C achieved the
highest AUC value of 0.939 (Figure 5A), when the window size
was set as 11-nt (Lu = Ld = 5) and 50 top ranked features were
used (Figure 5C,Table S2).
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FIGURE 4 | The different distribution of k-mer and PseDNC features between positive and negative samples. (A) The differences of k-mer and PseDNC features

between positive and negative samples based on the mean value difference and two-sample t-test. (B) The feature distribution is different between the positive and

negative samples and affected by the window size.

Prediction Evaluation and Comparison
Using Hold-Out and Independent Testing
Sets
After training PEA-m5C using the DatasetCVwith the optimized
window size and feature subset, we next evaluated the
performance of PEA-m5C on a hold-out test set (DatasetHT).
As shown in Figure 6A, the prediction score of positive samples
(mean± standard deviation [sd]: 0.775± 0.223) was significantly
higher than that of negative samples (mean ± sd: 0.194± 0.225).
This result indicates that PEA-m5C could provide a competitive
performance in discriminating positive and negative samples.
Indeed, PEA-m5C gave an area under ROC (AUC) and an
area under the precision-recall curve (auPRC) of 0.939 and
0.945, respectively (Figures 6B,C). To assess the performance
more comprehensively, six measures (Sn, Sp, Pr, Acc, MCC,
and F1) were examined at four thresholds, corresponding
to the specificity level of 99% (very high confidence mode;
VHmode), 95% (high confidence mode; HMode), 90% (normal
confidence mode; NMode) and 85% (Low confidence mode;
LMode) in the 10-fold cross-validation experiment, respectively
(Table 1). In line with the intuitive observations of ROC curve
(Figure 6B) and precision-recall curve (Figure 6C), PEA-m5C
performed markedly better than random selection (AUC = 0.5,
auPRC= 0.5, and MCC= 0) in predicting m5C modifications at
four different specificity levels (Table 1).

Currently, iRNAm5C-PseDNC is the only software available
for m5C prediction; however, it was built based on mammalian
m5C modifications. This provides us an opportunity to evaluate
whether iRNAm5C-PseDNC could retain prediction accuracy on
Arabidopsis m5C modifications. We observed that iRNAm5C-
PseDNC yielded a high specificity of 0.980, but an extremely
low sensitivity of 0.010. The main reason is that there are
significant differences between mammalian and Arabidopsis
m5C modifications (Figure S2). To examine the effectiveness
of ML algorithms in iRNAm5C-PseDNC, we generated a new
predictionmodel (named as iRNAm5C-PseDNC∗) by re-training

iRNAm5C-PseDNCusing positive and negative samples from the
DatasetCV and evaluated its performance using the DatasetHT.
Compared with iRNAm5C-PseDNC, iRNAm5C-PseDNC∗

yielded higher prediction accuracy at the level of Sn, Sp, Pr,
Acc, MCC, and F1. However, PEA-m5C still achieved higher
prediction accuracy than iRNAm5C-PseDNC and iRNAm5C-
PseDNC∗ (Table 1). The prediction performance of PEA-m5C
was also better than iRNAm5C-PseDNC and iRNAm5C-
PseDNC∗ on DatasetIT1 and Dataset2, which consist of
samples from Arabidopsis silique and shoot tissues, respectively
(Table S3).

Taken together, these results indicate that the construction of
Arabidopsis thaliana-specific predictor is necessary and crucial.
In addition, PEA-m5C is a useful tool for the prediction of m5C
sites in Arabidopsis transcripts.

Transcriptome-Wide Annotation and
Analysis of Candidate m5C Modifications
The encouraging performance of PEA-m5C in the cross-
validation and validation testing experiments provide us an
opportunity to accurately predict m5C sites in the annotated
Arabidopsis transcripts. At the threshold of 0.891 (VHMode),
PEA-m5C predicted 303,421 candidate m5C modifications
(Table 2), covering 4.56% cytosines (303,421/6,650,570) in
all annotated transcripts in Araport 11 database (https://
www.araport.org/data/araport11). During the writing of our
manuscript, Cui and colleagues identified 4,439 m5C peaks
in 3,534 expressed genes (Table S4) in young seedlings
of Arabidopsis (Cui et al., 2017), by applying m5C RNA
immunoprecipitation followed by a deep-sequencing approach.
We validated the m5C predictions using these 4,439 m5C peaks.
Among the 3,534 expressed genes, PEA-m5C identified 5,463
candidate m5C modifications, covering 2,724 of 4,439 reported
peak regions. We note that the proportion of covered m5C peaks
increased from 61.4% (2,724/4,439) to 89.4% (3,968/4,439), when
the HMode was used.
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FIGURE 5 | The performance improvement of PEA-m5C using a hybrid optimization strategy. (A) The prediction performance of PEA-m5C in terms of AUC is

optimized by varying window size and feature number. (B) The prediction performance of PEA-m5C in terms of AUC is optimized with different number of features for

a given window size. (C) The top 50-ranked features used in the optimized prediction models of PEA-m5C.

As is known to us all, cytosines in DNA sequences can be
methylated in three sequence context, namely CG, CHG, and
CHH (H= A, C, or T) (Smith and Meissner, 2013). In this study,
we explored the levels of cytosine methylation in RNA sequences.
We observed that 24.7, 27.8, and 47.5% of the candidate m5C
modifications are methylated in the CG, CHG, and CHH
sequence context, respectively. These proportions are markedly
different from those of cytosines in background sequences
(CG: 15.1%, CHG: 17.9%, CHH: 67.0%) (Figure 7A). Statistical
analysis of base preference showed that there are very strong
“G” signal around candidate m5C modifications (Figure 7B).
These results indicate that candidate m5C modifications
predicted by PEA-m5C may have potential biological
functions.

Toward a better understanding of these candidate m5C
modifications, we further analyzed the enrichment of m5C
within three different regions of mRNAs: 5′-UTR, CDS and
3′-UTR. It can be seen from Figure 7C that the majority

of m5C modifications are located in CDS regions. Recent
studies have indicated that the m5C modification prefers
to occur at the downstream of translational start sites in
mammal mRNAs (Amort et al., 2017; Yang et al., 2017). We
calculated the distance between candidate m5C modifications
and translational start sites, and found that the most frequently
m5C modification position is the 4nt downstream of the
translational start site (AUG∗C; methylated cytosines are
in bold and underlined) (Figure 7D). In order to further
investigate the potential function of those 1,063 genes with m5C
modifications located at 4-nt downstream of the translational
start site, we performed a GO (gene ontology) enrichment
analysis using agriGO 2.0 (Tian et al., 2017) and found
that in the BP (Biological Progress) sub-category, 166 genes
(Table 3) are enriched in the term “response to stimulus”
with FDR of 2.40E-4; For the MF (Molecular Function)
sub-category, 350 genes are significantly enriched in “catalytic
activity” with FDR of 9.80E-07 (Table 3). We also performed
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FIGURE 6 | Performance evaluation of PEA-m5C on the DatasetHT. (A) The different distribution of prediction scores for positive and negative samples. (B) The ROC

curve illustrating the high performance of PEA-m5C. (C) The precision-recall curve illustrating the high performance of PEA-m5C.

TABLE 1 | Prediction performance of m5C predictors on DatasetHT.

m5C predictor Mode Threshold Sn Sp Pr Acc MCC F1

PEA-m5C VHmode 0.891 0.330 1.000 1.000 0.665 0.445 0.496

HMode 0.765 0.720 0.950 0.935 0.835 0.688 0.814

NMode 0.622 0.860 0.900 0.896 0.880 0.761 0.878

LMode 0.484 0.900 0.860 0.865 0.880 0.761 0.882

iRNAm5C-PseDNC (web server) – – 0.010 0.980 0.333 0.495 −0.041 0.019

iRNAm5C-PseDNC (Method)* – 0.500 0.610 0.720 0.685 0.665 0.332 0.646

*An m5C prediction model generated by re-training iRNAm5C-PseDNC using positive and negative samples from the DatasetCV.

TABLE 2 | Candidate m5C modifications in different types of RNAs. Num:

number, Prop: proportion, trans: transcripts.

RNA Num of

trans

Num of

cytosines

Num (Prop) of

cytosines are

methylated

Num (Prop) of

trans containing

m5C

Long noncoding

RNA

2,455 161,608 1,480 (0.92%) 967(39.39%)

miRNA 387 1,082 15 (1.29%) 12(3.10%)

Primary miRNA

transcript

325 9,717 100 (1.03%) 74(22.77%)

mRNA 48,353 16,727,847 225,348 (1.35%) 44,350(91.72%)

rRNA 15 4,041 147 (3.64%) 12(80.00%)

snoRNA 287 5,049 70 (1.39%) 55(19.16%)

snRNA 82 2,906 62 (2.13%) 35(42.68%)

tRNA 689 10,227 272 (2.66%) 232(33.67%)

pathway enrichment analysis on these 1063 genes using the
hypergeometric distribution test. Pathway information was
obtained from KEGG (http://www.genome.jp/kegg) and AraCyc
(http://www.plantcyc.org) databases. At the level of p ≤ 1.0E-2,
we identified four significantly enriched pathways, including
L-lysine biosysthesis VI pathway, glutathione metabolism,
N-Glycan biosynthesis, and phosphatidylinositol signaling
system (Table S5).

Implementation of PEA-m5C
To facilitate the practicability, we implemented PEA-m5C into
an R package named “PEA-m5C”. We also provided a cross-
platform, user-friendly and interactive interface for PEA-m5C
with JAVA programming language (Figure 8). This allows the
user to easily implement PEA-m5C without the requirement of
any programming skills or knowledge. To expand the application
of PEA-m5C to other species, users can also retrain prediction
models through the pre-specified dataset using the “Self-Defined
Mode” option in PEA-m5C, with the input of positive and
negative samples in FASTA format. PEA-m5C is freely available
to academic users at: https://github.com/cma2015/PEA-m5C.

DISCUSSION

In this study, we developed PEA-m5C, a computationally
framework for accurate identification of m5C modifications
in Arabidopsis. PEA-m5C predictor was constructed using RF
algorithm with optimized window size and sequence-based
features, achieving a considerable promising performance no
matter from 10-fold cross-validation experiment or hold-out test
experiment. The PEA-m5C is superior to the newly developed
and only available m5C predictor iRNAm5C-PseDNC in several
aspects.

First, besides the PseDNC encoding scheme used in
iRNAm5C-PseDNC, PEA-m5C additionally integrates
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FIGURE 7 | Transcriptome-wide annotation of m5C modifications using PEA-m5C. (A) The proportions of candidate m5C modifications and all cytosine sites in three

different sequence contexts: CG, CHG and CHH (where H = A, C, or U). (B) The sequence logo of candidate m5C modifications. The position of candidate m5C

modifications is defined as 0. (C) The distribution of observed m5C modifications (positive samples in the DatasetCV), candidate m5C modifications, and all cytosine

sites (background) along the 5′-UTR, CDS and 3′-UTR, normalized for transcript length. (D) The distribution of candidate m5C modifications relative to translational

start sites. The position of translational start sites is defined as 0.

TABLE 3 | Top five significant GO terms in the sub-category of biological progress

(BP), molecular function (MF), and cellular component (CC).

GO Term Enriched gene

number

FDR Category

Lipid localization 10 2.60E-05 BP

Response to stimulus 166 0.00024 BP

Macromolecule localization 34 0.00032 BP

Localization 91 0.00032 BP

Toxin metabolic process 11 0.00032 BP

Transporter activity 91 3.70E-09 MF

Transmembrane transporter activity 69 9.80E-07 MF

Catalytic activity 350 9.80E-07 MF

Substrate-specific transporter activity 63 6.90E-06 MF

Substrate-specific transmembrane

transporter activity

56 1.10E-05 MF

Cytoplasm 299 2.60E-14 CC

Cell part 548 1.00E-13 CC

Cell 548 1.00E-13 CC

Cytoplasmic part 276 1.40E-13 CC

Membrane 200 1.40E-13 CC

another two encoding schemes (binary and k-mer) to
make more use of sequence-based features. Both 10-fold
cross-validation and independent testing experiments
have demonstrated that higher prediction accuracy can
be achieved by PEA-m5C when more feature encoding
schemes were used (Figure S3; Table S6). For instance, in
the 10-fold cross-validation, PEA-m5C yielded an AUC of
0.904, 0.914 and 0.939 when PseDNC, PseDNC + k-mer,
PseDNC + k-mer + binary encoding schemes were used,
respectively.

Second, PEA-m5C uses a hybrid optimization strategy
to produce better prediction accuracy (Table S6), while
iRNAm5C-PseDNC didn’t perform the model optimization
process. This is understandable as the model optimization is
a rather timing-consuming process (Figure 2). However, the
results shown in Figure 5 illustrated the importance of model
optimization in developing accurate m5C predictors. We also
would like to note that the process of model optimization
requires to be finely tuned, such as the choice of appropriate
feature selection approaches. To select informative features
for m5C prediction, we preferred to use the information
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FIGURE 8 | The Java interface implementation of PEA-m5C.

gain approach rather than statistical analysis approaches
(e.g., chi-square test for binary features, student’s t-test
for k-mer- and PseDNC-based features). While testing
on the DatasetHT, PEA-m5C using the information gain
approach yielded a slightly higher maximum MCC (0.790)
than that using the chi-square test and the student’s t-test
(0.770).

Finally, PEA-m5C has been implemented into a user-friendly
interface with JAVA programming language and an R package to
maximize its practicality. It also includes a self-training module
that provides an option to automatically build m5C predictors
for specific species, tissues, or conditions. This is very important
as m5C modifications exhibit different sequence patterns in
different issues (Figure S4).

In the future, we will endeavor to incorporate more
features (e.g., structure-based features) to further improve
the performance of PEA-m5C. If possible, specie-specific
or tissue-specific predictors will be developed to facilitate
the functional investigation of m5C modifications in
plants.
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DatasetHT (Root tissue) and DatasetIT1 (Silique tissue). (B) Two sample logos

DatasetHT (Root tissue) and DatasetIT1 (Silique tissue) m5C modifications.

(C) Frequencies of 41 ∗ 4 position-specific bases in DatasetHT (Root tissue) and

DatasetIT2 (Shoot tissue). (D) Two sample logos DatasetHT (Root tissue) and

DatasetIT2 (Shoot tissue) m5C modifications.

Table S1 | Four benchmark datasets constructed for the prediction of m5C

modifications in this study.

Table S2 | The feature importance measured using the information gain approach

at the window size of 11-nt (Lu = Ld = 5).

Table S3 | Prediction performance of m5C predictors on DatasetIT1 and

DatasetIT2.

Table S4 | Peak regions used for validating transcriptome-wide candidate m5C

modifications predicted by PEA-m5C.

Table S5 | Enriched pathways of genes containing m5C modifications at 4-nt

downstream of the translational start site.

Table S6 | The performance of m5C predictors on DatasetHT using different

encoding schemes.
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