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One-sentence summary:
MdUGT88F1-mediated phloridzin biosynthesis is critical for apple development and Valsa canker
resistance by regulating the interplay between cell wall deposition and accumulation of SA and

ROS.
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ABSTRACT

In apple (Malus domestica), the polyphenol profile is dominated by phloridzin, but its
physiological role remains largely elusive. Here, we used MdUGT88F1 (a key UDP-glucose:
phloretin 2'-0O-glucosyltransferase (P2'GT) gene) transgenic apple lines and Malus germplasm to
gain more insight into the physiological role of phloridzin in apple. Decreasing phloridzin
biosynthesis in apple lines by RNA silencing of MAUGT88F1 led to a series of severe phenotypic
changes that included severe stunting, reduced internode length, spindly leaf shape, increased stem
numbers, and weak adventitious roots. These changes were associated directly with reduced lignin
levels and disorders in cell wall polysaccharides. Moreover, compact organization of tissues and
thickened bark enhanced resistance to Valsa canker (caused by the fungus Valsa mali), which was
associated with lignin- and cell wall polysaccharide-mediated increases of SA (salicylic acid) and
ROS (reactive oxygen species). Phloridzin was also assumed to be utilized directly as a sugar
alternative and a toxin accelerator by V. mali in apple. Therefore, after infection with V. mali, a
higher level of phloridzin slightly compromised resistance to Valsa canker in MdUGT88F1
overexpressing apple lines. Taken together, our results shed light on the importance of
MdUGTS88F1-mediated biosynthesis of phloridzin in the interplay between plant development and

pathogen resistance in apple trees.

Key words: Apple; Phloridzin; Plant development; Cell wall deposition; Valsa canker; Valsa mali

INTRODUCTION

Plants are exposed naturally to a large range of biotic and abiotic stresses and, therefore, they need
to optimize their fitness by fine-tuning resource allocation for growth and defense (Huo et al.,
2014). Plants frequently adopt a comprehensive defense against pathogen/pest threats at the
expense of growth (Huo et al., 2014). A large number of structurally diverse molecules involved in
plant-pathogen interactions and plant growth are produced by the phenylpropanoid pathway. The
phenylpropanoid-derived polymer lignin is produced by oxidative polymerization of three
monolignol precursors: p-coumaryl alcohol (H unit), coniferyl alcohol (G unit), and sinapyl
alcohol (S unit); lignin cross-links plant secondary cell walls to provide mechanical strength and
hydrophobicity to the vascular system necessary for the plant’s ability to grow upward
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(Nakashima et al., 2008; Vanholme et al., 2008; Van Acker et al., 2013) (Fig. 1). Frequently,
interference with lignin biosynthesis leads to growth defects. Intriguingly, lignin-reduced plants
exhibit an increase in both salicylic acid (SA) levels and SA-inducible pathogenesis-related (PR)
transcripts (Nakashima et al., 2008; Li et al., 2010; Lee et al., 2011; Gallego-Giraldo et al., 2011ab;
Van Acker et al., 2013). SA is a crucial phytohormone required for plant defense against pathogens
(Vlot et al., 2009). The intriguing relationship between SA and lignin levels is mainly attributed to
their biosynthetic overlap (Chen et al., 2009). There have been two major pathways proposed for
SA biosynthesis in plants (Fig. 1). The initial pathway is derived from the shikimic acid pathway
with isochorismate (Wildermuth et al., 2001). The secondary pathway through cinnamate involves
a benzoate 2-hydroxylase (Le6n et al., 1995). Theoretically, any flux modifications to the lignin
pathway regulate the SA level. Alternatively, SA accumulation might result from the activation of
endogenous defense responses by elicitor-active polysaccharides released from improperly
lignified cell walls (Gallego-Giraldo et al., 2011ab).

Dihydrochalcones (DHCs) are phenylpropanoids that are very similar to chalcones
structurally, which are intermediates in flavonoid formation (Fig. 1). In apple (Malus domestica),
phloridzin (phloretin 2'-O-glucoside), which is the predominant DHC, comprises up to 90% of
soluble phenolic compounds in young shoots and leaves (Gosch et al., 2009). This makes apple
unique in the plant kingdom because phloridzin does not accumulate in such high amounts outside
Malus (Gosch et al., 2009). Variations in the DHC profile have been reported mostly within Malus,
but little is known about their physiological relevance (Zhou et al., 2017; 2018; Gutierrez et al.,
2018). Previous investigations reported that a Valsa canker-resistant apple, M. sieboldii,
accumulated less phloridzin than that of susceptible M. domestica. Moreover, the pathogen
degraded phloridzin directly for the production of toxins (i.e., phloroglucinol, protocatechuic acid,
p-hydroxybenzoic acid, 3-(p-hydroxyphenyl) propanoic acid, and p-hydroxyacetophenone) that
facilitated necrosis in apple bark (Koganezawa and Sakuma, 1982; Natsume et al., 1982; Wang et
al., 2014). Even so, there were no clear correlations between Valsa canker resistance and
phloridzin levels (Bessho et al., 1994).

Valsa canker, which is caused predominantly by the necrotrophic fungus Valsa mali, is one of
the most destructive diseases of apple in eastern Asia. Its successful infection only occurs in
wounded plants, although the conidia of the pathogen can germinate on both wounded and intact
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barks. Infectious hyphae of V. mali can colonize, but not effectively degrade, xylem vessels (Yin et
al., 2015). After they infect wounded tissues, the pathogen hyphae develop inter- and
intracellularly and colonize all bark tissues, which results in severe tissue maceration and necrosis
(Yin et al., 2015). Then, the infection causes twigs, limbs, or entire trees to die, and the infection
can even cause entire orchards to fail (Ke et al., 2013). New lesions and infected trunks and shoots
mostly appear in spring, and the canker develops rapidly between spring and early summer, and
then slowly after that (Abe et al., 2007). Because of its perennial nature and the extensive
penetration of its pathogen into host phloem and xylem, Valsa canker cannot be controlled
effectively with agricultural chemicals (Yin et al., 2015). To date, microRNAs (Feng et al., 2017),
pathogenic effectors (Zhang et al., 2018), toxic compounds (Natsume et al., 1982; Wang et al.,
2014), and cell wall-degrading enzymes (Yin et al., 2015) have been implicated in the
pathogenicity of V. mali. Previous work has shed light on the management of apple Valsa canker.
Meanwhile, genetic engineering appears to be one of the most effective and practical methods to
control this infection. However, there is very limited knowledge on Valsa canker resistance in
apple.

As a side branch of the phenylpropanoid pathway, biosynthesis of phloridzin is mediated by
three successive steps: 1) NADPH-dependent formation of p-dihydrocoumaroyl-CoA from
p-coumaroyl-CoA by  dehydrogenase (DH), 2) formation of phloretin from
p-dihydrocoumaroyl-CoA and three molecules of malonyl-CoA by the common chalcone synthase
(CHS), and 3) glycosylation of phloretin to phloridzin by UDP-glucose: phloretin
2'-O-glucosyltransferase (P2'GT) (Fig. 1) (Gosch et al., 2009; 2010). Previously, we identified a
key P2'GT, MdUGT88F1, which converted phloretin into phloridzin directly in apple (Zhou et al.,
2017). In this study, we analyzed comprehensively the physiological role of phloridzin using
MdUGT88F1 transgenic apple lines, which included overexpressing and silencing lines, and
Malus germplasm. Overall, our data clearly demonstrate that MAUGTS88F 1-mediated biosynthesis
of phloridzin is critical for plant development and Valsa canker resistance by regulating the

interplay between cell wall deposition and accumulation of SA and ROS in apple trees.

RESULTS
Phloridzin biosynthesis is vital to apple growth
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We previously identified two P2'GTs, MAUGT88F1 and MdUGTS88F4, that convert phloretin
into phloridzin in apple (Zhou et al., 2017). In this study, the expression of the key P2'GT gene
MdUGT88F1 was modified preferentially using a transgenic method. As a result, we obtained four
individual overexpressing (OE) lines and four individual RNA interference (RNAi). Two
pCambia2300-mediated OE lines, OE2-7 and OE3-4, and two pHellsgate2-mediated silencing
lines, Ri-3 and Ri-6, all of which displayed altered expression levels, were selected (Supplemental
Fig. S1). Slight phenotypic changes were only observed for Ri-3 and Ri-6 in tissue culture.
Moreover, many phenotypic changes, which included severe stunting, reduced internode length,
spindly leaf shape, more stems, and weak adventitious roots, were exhibited in RNAi apple lines
when transplanted from tissue culture to the greenhouse (Fig. 2A, 2B; Supplemental Table S1).
RT-gPCR analysis showed that these phenotypic changes in RNAi apple lines were associated
closely with reductions of MAUGT88F1 and MdUGT88F4 (Supplemental Fig. S1; Supplemental
Table S2). Because the sequences of MAUGT88F1 and MdUGT88F4 are highly similar (Zhou et
al., 2017), it was not possible to design primers to specifically knock-down either MAUGT88F1 or
MdUGT88F4 by RNAI. In contrast, OE2-7 and OE3-4 grew normally under both tissue-culture
and greenhouse conditions (Fig. 2A, 2B; Supplemental Table S1).

Analysis of the DHC profile revealed that there were no fluctuations observed in the OE
apple lines (Table 1). In contrast, in the RNAI apple lines, phloridzin levels were largely reduced,
and trilobatin appeared to accumulate significantly, which suggested decreased P2'GT activity
(Table 1). Moreover, under tissue-culture conditions, the application of phloridzin at 250 uM
significantly alleviated the retardation of leaf development and promoted branching in Ri-6, but
impeded the growth of GL-3 plantlets (Fig. 2C, 2D), which suggested an enhanced phloridzin
utilization efficiency in RNAi apple lines with reduced biosynthesis of phloridzin. Therefore,

phloridzin biosynthesis is extremely vital to apple growth.

A dwarf phenotype was closely associated with reduced lignin accumulation in RNAIi apple
lines

Differences in growth increased between GL-3 and RNAi apple lines that were grown in
greenhouse conditions for 3 months. Intriguingly, there was a higher root-shoot ratio (dry weight
and length) in Ri-3 (Fig. S2). Also, compared with those of GL-3, the thickened bark and reduced
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xylem in the stems of Ri-3 suggested a reduction of lignin (Fig. 3A, 3B). Analysis of lignin
verified that the cell wall residue (CWR) and acetyl bromide (AcBr) total lignin were reduced by
18.5% and 18.7%, respectively, in the stems of Ri-3, but not in roots (Fig. 3C, 3D), which
accounted for the higher root-shoot ratio.

Cellular organization of transgenic apple lines and GL-3 was examined by toluidine blue O
staining (Fig. 4A-D). Cross sections of leaves from Ri-3 revealed more compacted epidermal
cells, a thicker palisade, and disorderly vascular bundles in the main veins compared with GL-3
(Fig. 4A). The spindly shape of RNAi apple leaves was associated mainly with a smaller angle
between main and lateral veins, which reflected a disordered arrangement of the vascular bundle
(Fig. 4E, 4F). Cross sections of the stems of Ri-3 showed that reduced xylem coexisted with
expanded phloem, parenchyma, and pith. The decreased xylem also resulted in vessels with
smaller sizes and lower densities (Fig. 4B). In addition, there were compacted epidermal cells and
parenchyma cells with different shapes in Ri-3 stems (Fig. 4B, 4C). It is quite possible that these
cellular changes made RNAI apple lines more resistant to V. mali (e.g., more compact cells may
limit spread of the pathogen). In contrast, there appeared to be no obvious leaf and stem changes
in the OE apple lines (Fig. 4A, 4B). Vascular bundles of the transgenic and non-transgenic apple
roots were basically similar in morphology (Fig. 4D). B-glucuronidase (GUS) staining showed that
there was obvious GUS activity in the stem vascular bundles of lines expressing
ProMdUGT88F1:GUS, but not in an Arabidopsis thaliana line expressing ProMdUGT88F4:GUS
(Supplemental Fig. S3), which supported the hypothesis that MdUGT88F1-mediated phloridzin
biosynthesis plays an important role in the development of stem vascular bundles. Indeed,
Gaucher et al. (2013a) also found that dihydrochalcones localized around the vascular system in
apple.

Results from Wiesner and Maule staining further confirmed that there were less lignin or
fewer cells that contained lignin (i.e., a smaller xylem region in RNAi apple stems) (Fig. 4G, 4H).
Metabolic analysis revealed that p-coumaric acid and hydroxycinnamoyl derivatives were greatly
reduced in RNAi apple leaves (Supplemental Table S3). Among these decreased derivatives,
p-coumaryl alcohol and sinapaldehyde participate directly in the biosynthesis of H- and S-lignin,
respectively. However, there were no differences among the precursors of G-lignin, which include
coniferaldehyde and coniferyl alcohol. Taken together, the dwarf phenotype of the RNAi apple
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lines was closely associated with reduced lignin accumulation.

Abnormal composition of cell wall polysaccharides mediated by myo-inositol metabolism
contributed partly to growth reduction in RNAi apple lines

Theoretically, UDP-glucose fluctuations resulted in changes in sugar metabolism in
phloridzin biosynthesis-decreased RNAi apple lines. Metabolic analysis showed that the levels of
glucose and myo-inositol decreased significantly in RNAi apple leaves, where values were
46-58% and 45-61% of those measured in GL-3, respectively (Supplemental Table S3). Such
reductions were further verified by GC-MS analysis. For glucose, there appeared to be a slight
increment in OE apple stems. However, there were significant reductions found in both leaves and
stems of RNAI apple lines (Fig. 5SA). There were no differences among myo-inositol levels found
in leaves or stems of OE apple lines. In contrast, myo-inositol levels decreased in leaves and, in
particular, stems of RNAi apple lines (Fig. 5B).

To test if myo-inositol reduction partly accounted for the stunted growth observed in RNAi
apple lines, we conducted a myo-inositol depletion assay. Under MS control conditions, leaf
shapes of OE2-7, Ri-6, and GL-3 were basically the same. However, under myo-inositol depleted
conditions, stunted leaf growth occurred only in Ri-6, which indicated that the dwarf phenotype
may be related to myo-inositol reduction in RNAi apple lines (Fig. 5C, 5D). RNA-seq analysis
also revealed that two Galactinol synthase (GolS) genes were highly up-regulated in RNAi apple
leaves (Supplemental Table S2). In Arabidopsis, GolS enzyme directly converted myo-inositol into
galactinol for the biosynthesis of raffinose-family oligosaccharides, and it affected the
composition of cell wall polysaccharides indirectly (Valluru and den Ende, 2011). Because there
were glucose and myo-inositol reductions in the RNAi apple lines, we analyzed cell wall
polysaccharides in the stems of transgenic apple lines and GL-3. Levels of cellulose and total
pectic materials were essentially the same in transgenic and non-transgenic apple plants
(Supplemental Fig. S4), but different pectic compositions were found in both Ri-3 and Ri-6. The
cold water-soluble (WS) pectins increased at the expense of the EDTA-soluble pectic materials
(Fig. 5E). Thus, the decreased biosynthesis of phloridzin probably disturbed the composition of

cell wall polysaccharides through myo-inositol metabolism in RNAi apple lines.
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Decreased biosynthesis of phloridzin significantly enhanced resistance to Valsa mali in RNAi
apple lines

Previous studies suggested that phloridzin might increase susceptibility to Valsa canker in
apple (Koganezawa and Sakuma, 1982; Bessho et al.,, 1994). Accordingly, transgenic and
non-transgenic apple leaves (Fig. 6A, 6C) and stems (Fig. 6B, 6D) were inoculated with V. mali.
Three days after inoculation, lesions were observably smaller in RNAIi apple lines and slightly
larger in OE apple lines compared with GL-3. Also, RT-qPCR showed that OE apple lines and
GL-3 responded to infection by down-regulating MAUGT88F1 and MdUGT88F4 (Fig. 6E, 6F).
However, it is very difficult to assess the transcriptomic effects of V. mali on MdUGT88F1 when
RNAI apple lines were also being actively silenced for this gene (Fig. 6E, 6F). Meanwhile, in
leaves of GL-3, phloridzin was reduced significantly by V. mali. But a relatively lower reduction
led to a higher phloridzin accumulation in OE apple leaves after V. mali infection. Yet, there were
very small changes following infection in RNAi apple leaves (Fig. 6G), although there still
appeared to be a reduction in trilobatin (Fig. 6H). Phloretin was reduced in the leaves of RNAi
apple lines, but was unchanged in both GL-3 and OE apple leaves (Fig. 6I). Thus,
MdAUGTS88F1-mediated phloridzin biosynthesis appeared to have a negative effect on Valsa canker

resistance in apple.

Phloridzin was utilized directly as a sugar alternative and a toxin accelerator by Valsa mali
To elucidate the mechanism of phloridzin in resistance to Valsa canker, the correlation
between bark phloridzin levels and Valsa canker resistance in Malus was investigated based on our
previous investigation (Zhou et al., 2017) (Supplemental Table S4). Although there were no
significant correlations found, we observed a connection between Valsa canker susceptibility and
an increase in DHC content (Supplemental Fig. S5A). Next, two Malus accessions that displayed
contrasting susceptibilities to V. mali (i.e., susceptible and higher DHC-apple ZD1 (M. hupehensis
Rehd.) compared with a lower-DHC and resistant apple ZH16 (M. toringo)), were selected for
further analysis (Supplemental Fig. S5B, S5C). In ZD1, a decrease in DHC-glucosides and an
increase in aglycone phloretin indicated that deglycosylation of DHC-glucosides occurred in
response to V. mali invasion. In ZH16, there was a similar trend for DHCs upon infection with V.
mali, although there were no significant differences (Supplemental Fig. S5D). Furthermore,
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B-glucosidase activity in the infected bark increased gradually in both ZD1 and ZHI16
(Supplemental Fig. S5E). Both phloridzin and phloretin were characterized by a weakly
antimicrobial property towards V. mali (Supplemental Fig. S6). However, phloridzin (0.5 mM)
remained favorable for V. mali growth. We observed accelerated deglycosylation of phloridzin
followed by rapid degradation of phloretin once glucose was depleted in lines inoculated with V.
mali (Fig. 7A-C; Supplemental Fig. S6C, S6D). Thus, we concluded that V. mali hydrolyzed
phloridzin and consumed glucose by releasing B-glucosidase in barren apple bark. Additionally, 48
hours after incubation of V. mali, only the residual liquid from phloridzin-added normal potato
dextrose broth (PDB) caused obvious necrosis in apple leaves (Fig. 7D). Thus, it appeared that
phloridzin also accelerated tissue necrosis by facilitating production of toxins by V. mali (Fig. 7).
Gene expression analysis showed that UGT88F1 and UGT88F4 were down-regulated in both
ZD1 and ZH16 apple bark after infection by V. mali, although both phenylalanine ammonia lyase
(PAL) and CHS were induced (Supplemental Fig. S7). Generally, plants employ multiple
mechanisms to protect themselves from pathogen infection. The down-regulated expression of
UGTB88F1 in both resistant and susceptible apples reflected a common involvement of phloridzin
in Valsa canker resistance. Moreover, the negative involvement of phloridzin was also verified in
transgenic apple lines. Thus, the MAUGT88F1-mediated phloridzin biosynthesis would be one of
the factors that determined resistance to Valsa canker in apple trees. That is, phloridzin was

utilized directly as a sugar alternative and a toxin accelerator for V. mali in apple.

Levels of SA and reactive oxygen species (ROS) are implicated in Valsa canker resistance in
apple

RNA-seq analysis revealed that a large number of genes involved in plant-pathogen
interactions (e.g., PR genes and SA biosynthesis regulatory genes) were largely induced in RNAi
apple leaves (Supplemental Table S2). RT-qPCR demonstrated that the expressions of MdPRL,
MdPR2, MdPR4, MdPR5, and MdPR8 were largely up-regulated in RNAi apple leaves, but
remained unchanged in OE apple leaves (Supplemental Fig. S8A). Phytohormone analysis
verified that both free SA and total SA were largely accumulated in RNAi apple leaves, but only
total SA was reduced slightly in OE3-4 leaves (Fig. 8A, 8B). Moreover, these PRS were
differentially up-regulated in leaves from transgenic apple lines and GL-3 in response to V. mali
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infection (Fig. 8D). Compared with GL-3, higher expression was still shown in RNAi apple lines,
but in OE apple lines, lower levels of MAPR1 and MdPR2 and similar accumulation of MdPR4,
MdPRS5, and MdPR8 were found (Fig. 8D). The up-regulated PR genes (Supplemental Fig. S8B)
and increased SA levels (Fig. 8C) in both ZD1 and ZH16 upon infection with V. mali suggested a
positive role of SA in Valsa canker resistance in apple.

DHCs are considered to be excellent antioxidant compounds (Dugé de Bernonville et al.,
2010; Xiao et al.,, 2017). In particular, the large reductions in phloridzin (Table 1) and
hydroxycinnamoyl derivatives (Supplemental Table S3) certainly would interfere with the redox
state in RN A1 apple lines. Staining with nitro blue tetrazolium (NBT) and diaminobenzidine (DAB)
revealed a strong increase in hydrogen peroxide (H,0,) and superoxide ion (O;") accumulation in
leaves of RNAI lines when compared with those of GL-3, although there were no significant
differences in leaves of OE lines (Fig. 9A). In addition, metabolic analysis showed that levels of
oxidized and reduced glutathione (i.e., GSSH and GSH) decreased in RNAi apple leaves to
approximately 28% and 25% of those measured in GL-3, respectively. Also, there was a slight
reduction in L-ascorbate (AsA) (Supplemental Table S3). Such reductions largely accounted for
the high ROS accumulation in RNAi apple lines. Moreover, H,O, was differentially induced in
transgenic and non-transgenic apple leaves after infection by V. mali. (Fig. 9B). Although there
were no differences between GL-3 and OE lines under controlled conditions, lower induction
levels resulted in lower H,O, accumulation in both OE lines upon infection with V. mali. In
contrast, rare inductions resulted in comparable H,O, levels in GL-3 and RNAI apple leaves (Fig.
9B), which suggested that a higher pre-challenge level of H,O, was important (Fig. 9C, 9D). In
addition, in susceptible ZD1, H,O, decreased gradually after infection by V. mali (Fig. 9C).
However, in resistant ZH16, H,O, was induced rapidly and remained at a relatively higher level
(Fig. 9D). This indicated that ROS levels played a key role in Valsa canker resistance in apple. In
summary, after pathogen infection, decreased phloridzin biosynthesis increased the levels of SA

and ROS, which enhanced Valsa canker resistance in apple.

DISCUSSION
Phloridzin appears to play important physiological roles in plant development and pathogen
defense in apple (Zhang et al., 2007; Dare et al., 2013; Hutabarat et al., 2016). In the present study,
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we used MAdUGTB88F1, the key P2'GT gene, transgenic apple lines and wild Malus accessions to
gain new insight into the functions of phloridzin in apple. Overall, our results provided insight into
the importance of MdUGTS88F1-mediated phloridzin biosynthesis in the interplay between plant
development and pathogen resistance in apple trees.

We observed a severe reduction in growth in the MdUGTS88F1-RNAi apple lines with
decreased phloridzin biosynthesis. Other researchers also reported a very similar phenotype in
UGT88F1 silencing lines (Dare et al., 2017). Results from Dare et al. (2017) and this study
revealed the presence of trilobatin in the MdUGT88F1 silencing lines, which indicated that
decreased P2'GT activity led to a higher conversion of phloretin to trilobatin by UDP-glucose:
phloretin 4'-O-glucosyltransferase (P4'GT). Interestingly, a P4'GT gene, MdPh-4'-OGT, was
previously identified and found to be expressed in ‘Golden Delicious’ apple, which does not
accumulate trilobatin (Yahyaa et al., 2016). Independent silencing of CHS and UGT88FL1 also
resulted in similar phenotypes in apple (Dare and Hellens, 2013; Dare et al., 2013; 2017).
However, such phenotypic changes were not found in CHS null mutants from Arabidopsis, a
species that lacks phloridzin accumulation (Shirley et al. 1995; Li et al., 2010). Thus, these results
collectively indicated that decreased biosynthesis of phloridzin caused stunted growth in
MdUGT88F1 silencing lines, which was verified further by our study and Dare et al. (2017), who
used a phloridzin compensation assay.

Dwarf phenotypes in both CHS and UGT88FL1 silencing lines were attributed to increased
auxin transport, but flavonoids were also changed substantially (Dare et al., 2013; 2017).
Flavonoids are regarded by many to be key modulators of auxin transport (Besseau et al., 2007),
but there are also reports which seem to contradict this belief (Li et al., 2010; Gallego-Giraldo et
al., 2011a). Even so, this does not exclude the possible involvement of auxin in the plant
development of MAUGT88F1 silencing lines. Our data confirmed that phloridzin was a critical
compound in modulating the phenylpropanoid pathway flux. Lignin, which is a major structural
component of the secondary cell wall, and transgenic plants impaired in lignin biosynthesis
frequently exhibit reductions in growth (Li et al., 2010; Gallego-Giraldo et al., 2011a).

In this study, we compared our results carefully with other knockout lines affected in the
lignin pathway (Van Acker et al., 2013). Although the decrease in AcBr soluble lignin was
comparable with other lignin-reduced plants, the decrease of CWR was very severe. Eventually,
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both led to an approximate 35% reduction in total lignin in MAUGT88F1-RNAI lines, which
represented an appreciable reduction. Also, hydroxycinnamoyl derivatives were reduced
significantly in MdUGTS88F1-RNAi lines. Decreased levels of of p-coumaryl alcohol and
sinapaldehyde ultimately resulted in large losses of lignin and stunted growth. Moreover,
down-regulations were identified in 9 of the 11 differentially-expressed Laccase (LAC) genes in
MdUGTS88F1-RNAI lines (Supplemental Table S2). In addition to peroxidase, laccases are also
necessary for lignin polymerization through the oxidative polymerization of monolignols (Sun et
al., 2018). Consistent with this, down-regulation of UGT88F1 also resulted in large reductions of
hydroxycinnamoyl derivatives and smaller stem xylem region (Dare et al., 2017). In addition, a
metabolome and RNA-seq analysis revealed that increased expression of GolS and decreased
glucose levels were likely responsible for the myo-inositol reduction in MAUGT88F1-RNAI lines
(Valluru and den Ende, 2011). After myo-inositol was depleted, a strong reduction in growth was
observed MdUGT88F1-RNAI lines. Moreover, the myo-inositol reduction was accompanied by
modifications of pectic materials. As a versatile compound, myo-inositol is essential for plant
growth (Cui et al., 2013; Ye et al., 2016) and is involved in the production of cell wall
polysaccharides (Valluru and den Ende, 2011). Thus, the severely dwarfed phenotype among the
MdAUGTS88F1-RNAi apple lines with decreased phloridzin biosynthesis was related closely to
interference with cell wall deposition (i.e., decreased lignin levels and disorders of cell wall
polysaccharides).

SA was previously shown to cause reduced growth of plants with down-regulated lignin
(Gallego-Giraldo et al., 2011ab). In MdUGT88F1 silencing lines, decreased p-coumaric acid and
stable cinnamic acid levels indicated enhanced metabolic flux into SA biosynthesis (Supplemental
Table S3). Along with increased SA levels, the SA marker genes PRs and the SA biosynthesis
regulatory genes ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and PHYTOALEXIN
DEFICIENT 4 (PAD4) were also induced substantially in MdAUGT88F1-RNAi lines
(Supplemental Table S2). Also, the release of pectic elicitors from underlignified secondary cell
walls in lignin-reduced plants induced SA accumulation (Gallego-Giraldo et al., 2011ab).
Consistently, the WS-pectic materials increased at the expense of EDTA-pectins in
MdAUGTS88F1-RNAI lines. This modification was verified by decreased myo-inositol, which is a
key precursor of cell wall polysaccharides. A decrease in myo-inositol was previously shown to
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trigger SA-dependent programmed cell death (PCD) in plants (Chaouch and Noctor, 2010;
Bruggeman et al., 2015). Thus, it was likely that increased SA levels were attributed to spillover
from the phenylpropanoid pathway and myo-inositol-dependent release of pectic elicitors in
MdUGTS88F1-RNAIi apple lines.

Our study also suggested that in MAUGT88F1-RNAI lines, decreased phloridzin biosynthesis
enhanced Valsa canker resistance by increasing the SA level through indirect modulation of cell
wall deposition. SA signaling predominantly combats biotrophic pathogens and viruses, whereas
jasmonic acid (JA) signaling is critical for the response to necrotrophic pathogens and insects
(Glazebrook, 2005; Vlot et al., 2009). Generally, V. mali is considered to be a necrotrophic
pathogen (Yin et al., 2015). However, Valsa canker resistance would be independent of JA in
transgenic apple lines (Supplemental Fig. S9A). The role of SA in plant defense is frequently
associated with the accumulation of ROS and the activation of diverse groups of defense-related
genes, which mediate a hypersensitive response (HR, a fast PCD) (Apel and Hirt, 2004; Vlot et al.,
2009; Daudi et al., 2012). PCD is believed to be detrimental to biotrophic and hemibiotrophic
pathogens, because of a reduction of vivosphere and restriction of hyphae extension, but beneficial
to infections caused by necrotrophic pathogens (Gilchrist, 1998). Here, we revealed a positive
potential of SA in Valsa canker resistance in apple. Similarly, Yin et al. (2016a) found that genes
involved in apple SA signaling were significantly up-regulated after V. mali infection. To
counteract SA-induced defense responses, V. mali may have acquired a salicylate hydroxylase
gene (which encodes an enzyme that degrades SA) through horizontal gene transfer from bacteria
(Tanaka et al., 2015; Yin et al., 2016b).

In MdUGT88F1-RNAI lines, there were higher pre-challenge levels of ROS, although little
induction of H,0, was identified upon infection with V. mali. Increased ROS levels were
attributed mainly to a compromised antioxidant system, which included decreases in phloridzin,
hydroxycinnamoyl derivatives, GSSH, GSH, and AsA (Wang et al., 2012). Furthermore, the
contrasting H,O, dynamics in susceptible ZD1 and resistant ZH16 line indicated that oxidative
burst may be a key factor for Valsa canker resistance in apple. It has been observed previously that
H,0, can induced the accumulation of SA, and vice versa (Guo et al., 2017). In susceptible ZD1,
the loss of key modulator(s) in the positive feedback loop of SA and ROS made it necessary to
investigate further the role of ROS in Valsa canker resistance in apple.
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ROS act as antimicrobial molecules and are important signals that mediate plant disease
resistance. However, excessive ROS can be phytotoxic (Suzuki et al., 2011). Necrotrophs are
defined as pathogens that derive energy from dying or dead plant tissues, but they differ
substantially in the progression of pathogenesis, ranging from rapidly killing host cells, such as
Botrytis cinerea, to having an extended asymptomatic phase before killing host cells, such as
Alternaria alternata (Oliver et al., 2012; Meng et al., 2018). Recently, it was suggested that
suppressing PCD probably played an important role in infections by V. mali. V. mali may not need
to kill host cells rapidly, but instead may regulates their death to enable successful colonization
over time (Zhang et al., 2018). In the present study, we showed that JA does not appear to be
involved in Valsa canker resistance in apple (Supplemental Fig. S9B, 9C). We speculated that V.
mali could be a heminecrotrophic or hemibiotrophic pathogen.

We also considered that phloridzin may be utilized directly as a sugar alternative and a toxin
accelerator by V. mali in apple. Large quantities of glucose from the internal stock of phloridzin
released by the action of f-glucosidase might act as a complementary source of carbohydrates and
favor the fast multiplication of V. mali. A similar case was characterized in fire blight (Erwinia
amylovora) (Gaucher et al., 2013b). In that case, the aglycone phloretin from phloridzin
deglycosylation was degraded rapidly into toxins by V. mali, which facilitated establishment of
infection and lesion expansion (Koganezawa and Sakuma, 1982; Natsume et al., 1982; Wang et al.,
2014). We also found that phloridzin may facilitate toxin production by V. mali through signalling
pathways, rather than acting simply as metabolites for toxin production. Meanwhile, upon
infection with V. mali, apple optimized its Valsa canker response through self-regulation.
Down-regulations of UGT88F1 and UGT88F4 were identified in both susceptible ZD1 and
resistant ZH16 after infection, although both PAL and CHS were induced. We verified that a
higher level of phloridzin compromised Valsa canker resistance slightly in MAUGTS88F1-OE apple
lines following V. mali infection. In contrast, in MdUGT88F1-RNAi apple lines, decreased
phloridzin biosynthesis and lower glucose levels limited the growth and infection of V. mali
directly. In addition, the tightly organized tissues (e.g., compact epidermis and thickened bark
regions) limited V. mali colonization and its spread. In particular, MAUGT88F1-RNAi apple stems
were characterized by thickened bark and reduced xylem (Dare et al., 2017). Past work has shown
that V. mali mainly infected host bark and resulted in tissue necrosis, but it could not degrade
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xylem vessels effectively (Yin et al., 2015). In our investigation, we found that resistant apple
trees were characterized primarily by tough bark.

Overall, many pleiotropic changes were induced by MAUGT88FL1 silencing (e.g., increases in
SA level and PR expression, decreases in lignin and myo-inositol content, and changes in cell
morphology and tissue). However, it is still unclear how decreased phloridzin biosynthesis
resulted directly in these pleiotropic changes in MAUGT88F1-RNAI apple lines. Moreover, these
changes enhanced resistance to Valsa canker along with the direct role played by phloridzin as a
sugar alternative and a toxin accelerator by V. mali through a cocktail effect. However, the extent
to which these changes contributed to pathogen susceptibility remains unclear; this needs to be
investigated in the future. Anyhow, we still believe it is promising to coordinate apple growth
vigor and pathogen resistance by regulating biosynthesis of MdUGT88F1-mediated phloridzin

accurately.

CONCLUSIONS

In conclusion, we proposed a putative working model for phloridzin biosynthesis which is
necessary for regulating plant development and Valsa canker resistance in apple (Fig. 10). In
nature, a normal level of phloridzin biosynthesis maintains well-balanced cell wall deposition and
supports vigorous growth in apple. However, following infection with V. mali,
MdUGTS88F1-mediated phloridzin biosynthesis is decreased through a presently unknown
mechanism. This causes lignin reduction and disorders of cell wall polysaccharides by indirectly
modulating flux through the phenylpropanoid pathway and myo-inositol metabolism, respectively.
Modified cell wall deposition subsequently stimulates accumulation of SA and ROS. Although
modified cell wall deposition results in growth reductions, tissue reinforcements (e.g., in
epidermis and bark) ultimately inhibit infection by V. mali along with increases in SA and ROS.
Meanwhile, decreased phloridzin biosynthesis delays growth and toxin production of V. mali, and

promotes ROS accumulation, ultimately optimizing apple trees for defense against V. mali.

MATERIALS AND METHODS
Materials and growth conditions
Seeds of Arabidopsis thaliana ‘Col-0° and homozygous T3 transgenic lines were
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surface-sterilized and plated on Murashige and Skoog (MS) medium. After stratification at 4°C for
3 d, the plates were exposed to white light (PAR of 100 to 150 pE m™ s™) for 10 d. The
light-grown seedlings were transferred to soil and grown at 22°C under a 16 h light/ 8 h dark
cycle.

The mature leaves of ‘Royal Gala’ were used in gene and promoter cloning. GL-3, which is a
line with a high regeneration capacity isolated from ‘Royal Gala’, was used in genetic
transformation (Dai et al., 2013). GL-3 tissue-cultured plants were subcultured every 4 weeks.
After rooting on MS agar medium, transgenic and non-transgenic apple (Malus domestica)
plantlets were transferred to small plastic pots (8 x 8 cm) that contained a mixture of soil/perlite (1:
1, v:v). After 15 d of acclimation in a growth chamber, the plants were moved to large plastic pots
filled with soil and grown in the glasshouse. They were watered regularly and supplied with
half-strength Hoagland’s nutrient solution (pH 6.0) once a week.

One-year-old twigs of the same size from healthy trees of 68 Malus accessions were collected
from July to August of 2017 (Supplemental Table S4) from the Horticultural Experimental Station
of Northwest A&F University, Yangling (34°20 N, 108°24 E), China, and were subsequently used
in the correlation analysis between DHCs and Valsa canker resistance. The Valsa mali strain 03-8
was cultured on PDA (potato dextrose agar) or PDB (potato dextrose broth) in the dark at 25°C
(Yin et al., 2015).

Construction of plasmids and generation of transgenic Arabidopsis and apple plants

To construct transgenic Arabidopsis plants that expressed the GUS gene driven by the
MdUGT88F1 (ProMdUGT88F1:GUS/Col-0) or MdUGT88F4 (ProMdUGT88F4:GUS/Col-0)
promoter, 2247-bp and 2230-bp genomic promoter sequences upstream of the coding region of
MdUGT88F1 and MdUGT88F4 were amplified separately and transferred to the binary vector
pGWBA433. The resultant constructs were transferred into Agrobacterium tumefaciens GV3101,
and Arabidopsis plants were transformed by the floral dip method (Clough et al., 1998).

To generate transgenic apple lines, the coding region (CDS) of MAUGT88F1 was cloned and
introduced into the vectors pCambia2300 and pGWB411 to create two overexpressing constructs.
The vectors pHellsgate2 and pK7WIWG2D were used as RNAi-mediated vectors for silencing
MdUGT88F1, as described previously (Zhou et al., 2017). Afterwards, Agrobacterium-mediated
transformation of apple was carried out using GL-3 as the genetic background and strain EHA105
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(Dai et al., 2013). The primers used for constructing all vectors are shown in Supplemental Table
Ss5.
RNA extraction, DNA isolation, and RT-qPCR analysis

Total RNA was extracted using a Wolact Plant RNA Isolation Kit (Wolact, Hongkong, China).
Genomic DNA was isolated with a Wolact Plant Genomic DNA purification Kit (Wolact). The
RT-qPCR analysis was carried out as previously described (Zhou et al., 2017). Primers used are

listed in Supplemental Table S5.
Quantification of dihydrochalcones (DHCs)

Quantification of DHCs (including phloretin, phloridzin, trilobatin, and sieboldin) in Malus
samples was performed as described previously (Zhou et al., 2017; 2018).
Morphology Analysis

Shoot height, stem diameter, node number, branch number, leaf length and width, and root
dry weight were measured directly after harvesting. Total root length, root surface area, root
volume, and average diameter and forks were measured using a Winrhizo 2002 (Regent
Corporation, Canada). At least five biological replicates were performed for each measurement.
Complementation and depletion assays

For the complementation assay, the main shoots of GL-3 and transgenic apple plantlets after
4 weeks of subculturing were cut into 1.5-cm segments that included the first two leaves, and then
these cuttings were transplanted in sub-culture MS medium that contained either 0.1% (v/v) ethyl
alcohol or 250 uM phloridzin dissolved in ethyl alcohol under long-day conditions (14h: 10h, light:
dark cycle) at 23°C. Plants were photographed and growth parameters were recorded after 80 d of
sub-culture. For the depletion assay, the 1.5-cm segments were transplanted either in normal
medium or myo-inositol-depleted MS regeneration medium. After 35 d of treatment, plants were
photographed and growth parameters were measured.
GUS Staining

GUS staining was performed as described by Guo et al. (2017).
Histochemical Analysis

Tissue was excised from stems, leaves, and roots of 38-d-old transgenic apple lines and GL-3

and fixed in an FAA (formalin-aceto-alcohol) solution for 24 h. The fixed tissues were dehydrated
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using a series of different ethanol concentrations, permeated with wax, and embedded in wax.
Sections were sliced at a thickness of 10 um for toluidine blue O and for Méule and Wiesner
staining (Nakashima et al., 2008; Trabucco et al., 2013).

Determination of lignin and cell wall polysaccharide concentrations

The stems and roots of transgenic apple lines and GL-3 were dried at 45°C for 14 d and then
milled to a fine powder. The lignin content was determined with CWR (cell wall residue) using the
AcBr method (Van Acker et al., 2013). The cellulose content of stems was measured according to
Saleme et al. (2017). Extraction and measurement of pectic materials were described by
Gallego-Giraldo et al. (2011a).

Assays of infection, fungal growth, and toxins

The Valsa mali strain 03-8 was cultured on PDA for 3 d. Agar plugs (5 mm each) were taken
from the margin of the growing colony of the strain. One-year-old twigs of the same size from
healthy apple trees and both stems (2-month-old) and expanding leaves (38-d-old) of the
transgenic apple line and GL-3 were inoculated using stab-inoculation (leaves) and the hole
puncher wounding method (twigs and stems) (Wei et al., 2010). Inoculated leaves and stems were
incubated at 25°C for 3 d, and inoculated twigs were incubated at 25°C for 6 d. The lesion sizes of
leaves were measured by the crossing method. The total length of longitudinal lesions along twigs
and stems was measured directly as the size of the lesions. All leaves and bark (15-cm-length
twigs) were collected, immediately frozen in liquid nitrogen, and stored at —80°C before analysis
of gene expression, dihydrochalcones levels, enzymatic activity, phytohormone content, and H,O,
level.

To evaluate the effects of phloridzin and phloretin on growth of strain 03-8, agar plugs (5 mm
each) from the margin of one growing colony on PDA were incubated on normal and
glucose-depleted PDA/PDB with or without phloridzin or phloretin. Growth rates of strain 03-8
were calculated using the expansion of the colony diameters or ODggo values. The residual liquid
of the incubated PDB was used to determine DHCs quantitatively after strain 03-8 was removed
using centrifugation and a 0.22-um syringe filter. Meanwhile, the toxic effects of the residual
liquid from the PDB culture of V. mali on leaves of 2-month-old M. prunifolia (obtained from
tissue-culture) grown in a greenhouse were measured by the simple leaf-puncture assay. A 20-uL
aliquot was inoculated in punctured leaves once a day for five successive days.
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Assays for enzymatic activity

The activity of B-Glucosidases (EC 3.2.1.21, B-Glu) of apple bark in response to infection of
Valsa mali was measured as described by Gaucher et al. (2013b).

Measurement of phytohormone levels

SA and JA were extracted and purified as described in Fu et al. (2012). Briefly, a 50-uL
aliquot of extracting solution was air-dried with nitrogen gas before being dissolved in 250 pL
sodium acetate (0.1 M, pH 5.5), after which it was treated with 10 pL of B-glucosidase (1 U/uL)
and hydrolyzed at 37°C for 2 h. After the hydrolysate was denatured in boiling water for 5 min
and centrifuged at 13,000 g for 10 min at 4°C to pellet the protein, the supernatant was used to
determine total SA content. A 5-pL aliquot was loaded into the LC-MC system (SCIEX,
QTRAP5500) equipped with an InertSustain AQ-C18 column (5.0 um particle size, 4.6 mmx150
mm; GL Sciences Inc., Tokyo, Japan) at a flow rate of 0.7 mL/min. The solvent system consisted
of water that contained 0.1% (v/v) formic acid (A) and methanol (B). The gradient followed 75%
A (0 min), 75% A (1 min), 5% A (5 min), 5% A (6.5 min), 75% A (6.6 min), and 75% A (13 min).
Evaluation of H,O; and O,

Accumulations of H,O, and O, were examined by histochemical staining methods that used
DAB and NBT, respectively (Hu et al., 2018). Quantitative H,O, measurement was performed
using detection kits based on the manufacturer's instructions (Suzhou Comin Biotechnology Co.,
Ltd, Suzhou, China).

Metabolome analysis

The fourth and fifth leaves of 38-day-old GL-3 and RNAIi apple lines from the top of each
plant were collected, frozen immediately in liquid nitrogen, and stored at -80 °C. Then, the leaves
were delivered to Metware Biotechnology Co., Ltd. (Wuhan, China) to analyze the widely
targeted metabolome (Chen et al., 2013). Soluble sugars and sugar alcohols were verified
according to the protocol of Hu et al. (2018).

RNA-Sequencing

The plant materials used for RNA-seq analysis were the same as the materials used in the
metabolome analysis. After filtrating the adapter and low-quality reads, clean reads were aligned
to the reference genome GDDH13 of apple
(https://iris.angers.inra.fr/gddh13/the-apple-genome-downloads.html) by HISAT2 (Kim et al.,
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2015). FeatureCounts (Liao et al., 2014) was used to count the reads numbers that were mapped to
each gene. DESeq2 was applied for differential gene expression analysis (Love et al., 2014). The
resulting P-values were adjusted by the Benjamini-Hochberg’ approach to control for a false
discovery rate (FDR). Genes with |log2Fold Change| > 1 and FDR < 0.05 were considered to be
expressed differentially. The differentially expressed genes were further analyzed with Gene

Ontology (GO) and KEGG (KEGG: http://www.genome.jp/kegg/) analysis. ClusterProfiler

software was adopted for GO enrichment analysis (Yu et al., 2012), and the Benjamini and
Hochberg’ approach was also used to test the statistical enrichment of differentially expressed
genes in the KEGG pathway.
Statistical Analysis

SPSS software (version 17.0) was used for statistical analysis. Data were subjected to
one-way ANOVA and reported as the mean + standard deviation (SD).
Accession Numbers

Sequence data from this paper can be found in the GenBank/EMBL data libraries under the
following accession numbers: MAUGT88F1(KX639791), MdAUGT88F4 (KX639792),
MdPh-4'-OGT (AY786997), MdPAL (XM _008389362.2), MACHS (AAY45748), MdCHI
(XM_008371941.2), MdPR1 (GU317941), MdPR2 (AY548364.1), MdPR4 (JQ342967.1),
MdPRS5 (DQ318213.1), MdPR8 (DQ318214.1), MdCOI1 (XM _008383757.2), MdPLD

(XM_008375733.2), MdIMT (XM_008389809.2), and VmG6PDH (KC248180).
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Supplemental Figure S1. Identification of transgenic apple lines.

Supplemental Figure S2. Phenotypes of the 3-month-old GL-3 and Ri-3.
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660  Table 1. DHC profiles of transgenic apple lines and GL-3 (ug g FW, fresh weight). Data are
661  means £ SD (n = 3, three biological replicates). *** indicates P < 0.001; ** < 0.01. ‘nd’, not
662  determined.
663
664
Tissues DHCs GL-3 OE2-7 OE3-4 Ri-3 Ri-6
Phloridzin  14731.75+488.89  14902.97+ 314.81 14753.02 £ 620.25 8029.11 = 643.45 *¥** 612508 +341.55 *¥*
Leaf Trilobatin nd nd nd 152.81 £10.26 125.75 £ 9.69
Phloretin 107.42 £43.58 123.09 £29.56 129.74 = 30.6 145.73 £ 29.96 83.28£10.33
Phloridzin  8308.29 + 333.41 8213.76 +391.2 8071.4 +379.38 4704.85 £386.23 ***  5052.73 +722.73 **
Stem Trilobatin nd nd nd 100.17 +£9.29 143.24 £ 14.79
Phloretin nd nd nd nd nd
Root  Phloridzin  6475.3 +355.73 6565.33 + 1284.84 6497.38 + 403.82 2117.73+309.18 **%  2280.12 % 277.35 ***
Trilobatin nd nd nd 68.91 +15.8 79.98 £ 10.89
Phloretin nd nd nd nd nd
665
666
667
668
669
670
671
672
673
674
675
676
677
678
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FIGURE LEGENDS

Figure 1. Biosynthetic pathways of salicylic acid, lignin, and phloridzin. PAL, phenylalanine
ammonia lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate:CoA ligase; CHS, chalcone
synthase; CHI, chalcone isomerase; DH, dehydrogenase; P2'GT, UDP-glucose:phloretin
2'-O-glucosyltransferase;  P4'GT, UDP-glucose:phloretin ~ 4'-O-glucosyltransferase;  ICS,
isochorismate synthase; IPL, isochorismate pyruvate lyase; BA2H, benzoic acid-2-hydroxylase;
SA, salicylic acid; SAGT, SA glucosyltransferase; HCT, hydroxycinnamoyl CoA: shikimate
hydroxycinnamoyl transferase; CCR, cinnamoyl-CoA reductase; C3H, C3-hydroxylase; CSE,
caffeoyl shikimate esterase; COMT, caffeic acid O-methyltransferase; F5SH, ferulate 5-hydroxylase;
ALDH, aldehyde dehydrogenase; CoAOMT, caffeoyl-CoA O-methyltransferase; CAD, cinnamyl

alcohol dehydrogenase.

Figure 2. Decreased phloridzin biosynthesis resulted in severe reductions in growth in apple.
(A, B) Phenotypes of 38-day-old transgenic apple lines and GL-3. (C, D) Assay of phloridzin
compensation. Data are means = SD (n = 5, five biological replicates). Values not represented by
the same letter are significantly different (P < 0.05). MS control and PZ application represent

normal and phloridzin-applied MS regeneration medium, respectively. PZ, phloridzin.

Figure 3. Down-regulation of phloridzin biosynthesis decreased lignin accumulation in apple.
(A, B) Stem compositions in the 3-month-old GL-3 and Ri-3. (C) CWR (cell wall residue) content
and (D) AcBr (acetyl bromide) total lignin concentration in the stems and roots of GL-3 and Ri-3.
Bark was marked with red lines. Data are means = SD (n =5 for B, five plants were used for each
line; n =5 for C, five biological replicates; n = 10 for D, ten biological replicates). In comparison
with GL-3, *** indicates P < 0.001; ** < 0.01; * <0.05. “+” and “-” indicate significant increases

and decreases, respectively (P < 0.05).

Figure 4. Histochemical and morphological analysis of transgenic apple lines. Toluidine blue
O staining of cross-sections of a (A) leaf, (B) stem, and (D) root of GL-3 and transgenic apple
lines. (C) Higher magnification of a portion of the stem highlighting the epidermal cells. (E, F)
Angles between main and lateral veins of the leaves of GL-3 and Ri-6. (G) Wieser and (H) Méule
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staining of the stem cross-sections of GL-3 and transgenic apple lines. Scale bars = 100 pm (A, B,
G, and H) or 50 um (D). Data are means + SD (n = 11, eleven leaves from eleven plants were used
for each line). *** indicates significant difference from GL-3 at P < 0.001. pl, palisade cells; s,
spongy mesophyll; ue, upper epidermis; le, lower epidermis; p, parenchyma; ph, phloem; x, xylem.

v, vessel.

Figure 5. Decreased phloridzin biosynthesis resulted in disorders in myo-inositol metabolism
and cell wall polysaccharides. Levels of (A) glucose and (B) myo-inositol in the leaves of the
38-day-old transgenic apple lines and GL-3. (C, D) Assay results of myo-inositol depletions. (E)
Compositions of pectic materials in stems of the 38-d-old transgenic apple lines and GL-3. Data
are means £ SD (n = 3 for A, B, E, three biological replicates; n = 7 for D, at least seven biological
replicates). In comparison with GL-3, *** indicates P < 0.001; ** < 0.01; * < 0.05. Values not
represented by the same letter are significantly different (P < 0.05). “+” and “-” indicate
significant increases and decreases, respectively (P < 0.05). MS control and MI depletion
represent normal and myo-inositol-depleted MS regeneration medium, respectively; WS, EDTA,

and HCl represent crude cold water, EDTA, and HCl soluble fractions, respectively.

Figure 6. Down-regulation of MdUGT88F1 resulted in enhanced resistance to Valsa mali
infection. Evaluation results of Valsa canker resistance in the transgenic apple lines and GL-3 by
(A, C) leaf and (B, D) stem inoculation. Changes of (E) MdUGT88F1 and (F) MdUGT88F4
expressions and (G-I) DHC levels in the leaves of transgenic apple lines and GL-3 in response to V.
mali infection. Data are means = SD (n 2 15 for C, D, at least fifteen plants (one leaf or stem from
each plant) were used for each line; n = 3 for E-I, three biological replicates). In comparison with
GL-3, *** indicates P < 0.001; ** < 0.01; * < 0.05. Values not represented by the same letter are
significantly different (P < 0.05). ‘nd’, not determined; Control, PDA control; Treatment, V. mali

infected leaves.

Figure 7. Phloridzin directly promotes growth and toxin production of Valsa mali. (A) Effects
of phloridzin on V. mali growth after 48-hour culture. Change in (B) phloridzin and (C) phloretin
concentration in culture. (D) Assay of toxins from the 48-hour-culture residues. /+Glc, normal
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PDB; /-Glc, PDB without glucose; /+Glc+PZ, normal PDB with phloridzin added (0.5 mM);
/-Glc+PZ, PDB without glucose and with phloridzin added (0.5 mM); Data are means £ SD (n = 4,
four biological replicates). Values not represented by the same letter are significantly different (P <

0.05).

Figure 8. SA is positively implicated in Valsa canker resistance in RNAi lines. Levels of (A)
free and (B) total SA in the leaves from 38-day-old transgenic apple lines and GL-3. (C) Free SA
levels of susceptible ZD1 and resistant ZH16 apple bark on day 4 after their infection by V. mali.
(D) Expression changes in MdPR genes in the leaves of transgenic apple lines and GL-3 in
response to V. mali infection. Data show means + SD (n = 3, three biological replicates). In
comparison with GL-3 or Control, *** indicates P < 0.001; ** < 0.01. Values not represented by
the same letter are significantly different (P < 0.05). Control, PDA control; Treatment, V. mali

infected (C) bark or (D) leaves.

Figure 9. Increased ROS accumulation contributed to enhanced Valsa canker resistance in
RNAI lines. (A) NBT- and DAB-staining of the leaves of transgenic apple lines and GL-3. (B)
Changes in concentration of H,O; in the leaves from transgenic apple lines and GL-3 in response
to V. mali infection. Changes in concentration of H,0O, in (C) susceptible apple ZD1 and (D)
resistant apple ZH16 in response to V. mali infection. Data show means = SD (n = 3, three
biological replicates). Values not represented by the same letter are significantly different (P <

0.05). Control, PDA control; Treatment, V. mali infected (B) leaves or (C, D) bark.

Figure 10. A model for MdUGT88F1-mediated phloridzin biosynthesis regulating plant
development and Valsa canker resistance in apple. In nature, normal phloridzin biosynthesis
maintains well-balanced cell wall deposition and supports vigorous growth in apple. After
infection by Valsa mali, MAUGT88F1-mediated phloridzin biosynthesis is decreased through an
unknown mechanism, which causes lignin reduction and SA accumulation by indirectly changing
phenylpropanoid pathway flux. In addition, decreased phloridzin biosynthesis gives rise to
disorders of cell wall polysaccharides by indirectly changing myo-inositol metabolism, which also
stimulates accumulation of SA. Modified cell wall deposition results in growth reduction, but also
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769

770

771

772

reinforcement of tissue. The reinforced tissue inhibits infection by V. mali along with increases in
SA and ROS. Also, decreased phloridzin biosynthesis directly delays growth and toxin production
of V. mali and promotes accumulation of ROS. Eventually, apple trees adjust to V. mali infection.

Solid and dashed lines refer to direct and indirect effects, respectively.
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Figure 1. Biosynthetic pathways of salicylic acid, lignin, and phloridzin. PAL, phenylalanine
ammonia lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate:CoA ligase; CHS, chalcone
synthase; CHI, chalcone isomerase; DH, dehydrogenase; P2'GT, UDP-glucose:phloretin
2'-O-glucosyltransferase;  P4'GT, UDP-glucose:phloretin  4'-O-glucosyltransferase;  ICS,
isochorismate synthase; IPL, isochorismate pyruvate lyase; BA2H, benzoic acid-2-hydroxylase;
SA, salicylic acid; SAGT, SA glucosyltransferase; HCT, hydroxycinnamoyl CoA: shikimate
hydroxycinnamoyl transferase; CCR, cinnamoyl-CoA reductase; C3H, C3-hydroxylase; CSE,
caffeoyl shikimate esterase; COMT, caffeic acid O-methyltransferase; F5H, ferulate 5-hydroxylase;
ALDH, aldehyde dehydrogenase; CoAOMT, caffeoyl-CoA O-methyltransferase; CAD, cinnamyl

alcohol dehydrogenase.
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Figure 2. Decreased phloridzin biosynthesis resulted in severe reductions in growth in apple.
(A, B) Phenotypes of 38-day-old transgenic apple lines and GL-3. (C, D) Assay of phloridzin
compensation. Data are means + SD (n = 5, five biological replicates). Values not represented by
the same letter are significantly different (P < 0.05). MS control and PZ application represent

normal and phloridzin-applied MS regeneration medium, respectively. PZ, phloridzin.
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Figure 3. Down-regulation of phloridzin biosynthesis decreased lignin accumulation in apple.
(A, B) Stem compositions in the 3-month-old GL-3 and Ri-3. (C) CWR (cell wall residue) content
and (D) AcBr (acetyl bromide) total lignin concentration in the stems and roots of GL-3 and Ri-3.
Bark was marked with red lines. Data are means + SD (n = 5 for B, five plants were used for each
line; n =5 for C, five biological replicates; » = 10 for D, ten biological replicates). In comparison
with GL-3, *** indicates P < 0.001; ** < 0.01; * < 0.05. “+” and “-” indicate significant increases

and decreases, respectively (P < 0.05).
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Figure 4. Histochemical and morphological analysis of transgenic apple lines. Toluidine blue
O staining of cross-sections of a (A) leaf, (B) stem, and (D) root of GL-3 and transgenic apple
lines. (C) Higher magnification of a portion of the stem highlighting the epidermal cells. (E, F)
Angles between main and lateral veins of the leaves of GL-3 and Ri-6. (G) Wieser and (H) Méule
staining of the stem cross-sections of GL-3 and transgenic apple lines. Scale bars = 100 um (A, B,
G, and H) or 50 pm (D). Data are means = SD (n = 11, eleven leaves from eleven plants were used
for each line). *** indicates significant difference from GL-3 at P < 0.001. pl, palisade cells; s,
spongy mesophyll; ue, upper epidermis; le, lower epidermis; p, parenchyma; ph, phloem; x, xylem.

v, vessel.
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Figure 5. Decreased phloridzin biosynthesis resulted in disorders in myo-inositol metabolism

and cell wall polysaccharides. Levels of (A) glucose and (B) myo-inositol in the leaves of the

38-day-old transgenic apple lines and GL-3. (C, D) Assay results of myo-inositol depletions. (E)

Compositions of pectic materials in stems of the 38-d-old transgenic apple lines and GL-3. Data

are means = SD (n =3 for A, B, E, three biological replicates; n =2 7 for D, at least seven biological

replicates). In comparison with GL-3, *** indicates P < 0.001; ** < 0.01; * < 0.05. Values not

represented by the same letter are significantly different (P < 0.05). “+” and *-” indicate

significant increases and decreases, respectively (P < 0.05). MS control and MI depletion

represent normal and myo-inositol-depleted MS regeneration medium, respectively; WS, EDTA,

and HCI represent crude cold water, EDTA, and HCI soluble fractions, respectively.
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Figure 6. Down-regulation of MdUGTS88FI resulted in enhanced resistance to Valsa mali
infection. Evaluation results of Valsa canker resistance in the transgenic apple lines and GL-3 by
(A, C) leaf and (B, D) stem inoculation. Changes of (E) MdUGT88FI and (F) MdUGTS88F4
expressions and (G-1) DHC levels in the leaves of transgenic apple lines and GL-3 in response to V.
mali infection. Data are means + SD (1 2 15 for C, D, at least fifteen plants (one leaf or stem from
each plant) were used for each line; n = 3 for E-I, three biological replicates). In comparison with
GL-3, *** indicates P < 0.001; ** < 0.01; * < 0.05. Values not represented by the same letter are
significantly different (P < 0.05). ‘nd’, not determined; Control, PDA control; Treatment, V. mali

infected leaves.
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Figure 7. Phloridzin directly promotes growth and toxin production of Valsa mali. (A) Effects
of phloridzin on V. mali growth after 48-hour culture. Change in (B) phloridzin and (C) phloretin
concentration in culture. (D) Assay of toxins from the 48-hour-culture residues. /+Gle, normal
PDB; /-Gle, PDB without glucose; /+Glc+PZ, normal PDB with phloridzin added (0.5 mM);
/-Glc+PZ, PDB without glucose and with phloridzin added (0.5 mM); Data are means = SD (n =4,
four biological replicates). Values not represented by the same letter are significantly different (P <

0.05).
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Figure 8. SA is positively implicated in Valsa canker resistance in RNAI lines. Levels of (A)
free and (B) total SA in the leaves from 38-day-old transgenic apple lines and GL-3. (C) Free SA
levels of susceptible ZD1 and resistant ZH16 apple bark on day 4 after their infection by V. mali.
(D) Expression changes in MdPR genes in the leaves of transgenic apple lines and GL-3 in
response to V. mali infection. Data show means + SD (n = 3, three biological replicates). In
comparison with GL-3 or Control, *** indicates P < 0.001; ** < 0.01. Values not represented by
the same letter are significantly different (P < 0.05). Control, PDA control; Treatment, V. mali

infected (C) bark or (D) leaves.
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Figure 9. Increased ROS accumulation contributed to enhanced Valsa canker resistance in
RNA:I lines. (A) NBT- and DAB-staining of the leaves of transgenic apple lines and GL-3. (B)
Changes in concentration of H2O: in the leaves from transgenic apple lines and GL-3 in response
to V. mali infection. Changes in concentration of H20:z in (C) susceptible apple ZD1 and (D)
resistant apple ZH16 in response to V. mali infection. Data show means £ SD (n = 3, three
biological replicates). Values not represented by the same letter are significantly different (P <

0.05). Control, PDA control; Treatment, V. mali infected (B) leaves or (C, D) bark.
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Figure 10. A model for MdUGT88F1-mediated phloridzin biosynthesis regulating plant
development and Valsa canker resistance in apple. In nature, normal phloridzin biosynthesis
maintains well-balanced cell wall deposition and supports vigorous growth in apple. After
infection by Valsa mali, MAUGT88F1-mediated phloridzin biosynthesis is decreased through an
unknown mechanism, which causes lignin reduction and SA accumulation by indirectly changing
phenylpropanoid pathway flux. In addition, decreased phloridzin biosynthesis gives rise to
disorders of cell wall polysaccharides by indirectly changing myo-inositol metabolism, which also
stimulates accumulation of SA. Modified cell wall deposition results in growth reduction, but also
reinforcement of tissue. The reinforced tissue inhibits infection by V. mali along with increases in
SA and ROS. Also, decreased phloridzin biosynthesis directly delays growth and toxin production
of V. mali and promotes accumulation of ROS. Eventually, apple trees adjust to V. mali infection.

Solid and dashed lines refer to direct and indirect effects, respectively.
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